
Trusted Postgres Architect
Version 23.40.1

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. Built at 2025-11-04T11:29:28

5
9

10
11
14
18
19
22
24
27
31
32
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
62
66
67
69
73
82
86
88
89
91
94
97
99

1 Trusted Postgres Architect
2 Trusted Postgres Architect release notes
2.1 Trusted Postgres Architect 23.40.1 release notes
2.2 Trusted Postgres Architect 23.40.0 release notes
2.3 Trusted Postgres Architect 23.39.0 release notes
2.4 Trusted Postgres Architect 23.38.1 release notes
2.5 Trusted Postgres Architect 23.38.0 release notes
2.6 Trusted Postgres Architect 23.37.0 release notes
2.7 Trusted Postgres Architect 23.36.0 release notes
2.8 Trusted Postgres Architect 23.35.0 release notes
2.9 Trusted Postgres Architect 23.34.1 release notes
2.10 Trusted Postgres Architect 23.34 release notes
2.11 Trusted Postgres Architect 23.33 release notes
2.12 Trusted Postgres Architect 23.32 release notes
2.13 Trusted Postgres Architect 23.31 release notes
2.14 Trusted Postgres Architect 23.30 release notes
2.15 Trusted Postgres Architect 23.29 release notes
2.16 Trusted Postgres Architect 23.28 release notes
2.17 Trusted Postgres Architect 23.27 release notes
2.18 Trusted Postgres Architect 23.26 release notes
2.19 Trusted Postgres Architect 23.25 release notes
2.20 Trusted Postgres Architect 23.24 release notes
2.21 Trusted Postgres Architect 23.23 release notes
2.22 Trusted Postgres Architect 23.22 release notes
2.23 Trusted Postgres Architect 23.21 release notes
2.24 Trusted Postgres Architect 23.20 release notes
2.25 Trusted Postgres Architect 23.19 release notes
2.26 Trusted Postgres Architect 23.18 release notes
2.27 Trusted Postgres Architect 23.17 release notes
2.28 Trusted Postgres Architect 23.16 release notes
2.29 Trusted Postgres Architect 23.15 release notes
2.30 Trusted Postgres Architect 23.14 release notes
2.31 Trusted Postgres Architect 23.13 release notes
2.32 Trusted Postgres Architect 23.12 release notes
2.33 Trusted Postgres Architect 23.1 to 23.11 release notes
3 TPA installation
4 Open source TPA
5 Installing TPA from source
6 A First Cluster Deployment
7 Cluster configuration
8 tpaexec provision
9 tpaexec deploy
10 tpaexec test
11 PGD-S
12 PGD-X
13 PGD-Always-ON
14 PGD Lightweight
15 BDR-Always-ON

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 2

101
104
110
112
116
121
124
127
130
137
138
139
142
147
149
151
153
160
162
164
166
167
171
175
179
181
183
187
192
194
197
202
203
204
205
207
210
211
212
213
214
215
221
222
223
224
226
227

16 M1
17 aws
18 bare(-metal servers)
19 Docker
20 Cluster configuration
21 Instance configuration
22 Building from source
23 TPA hooks
24 Upgrading your cluster
25 tpaexec switchover
26 BDR/HAProxy server pool management
27 tpaexec rehydrate
28 TPA and Ansible Tower/Ansible Automation Platform
29 TPA, Ansible, and sudo
30 TPA - PuTTY Configuration guide
31 Troubleshooting
32 Selective task execution
33 Running TPA in a Docker container
33.1 Managing clusters in a disconnected or air-gapped environment
33.2 Distribution support
33.3 TPA capabilities and supported software
33.4 Reconciling changes made outside of TPA
33.5 EDB Postgres Distributed configuration
33.6 Barman
33.7 Configuring EFM
33.8 Configuring haproxy
33.9 Configuring HARP
33.10 Configuring Postgres Enterprise Manager (PEM)
33.11 PgBouncer
33.12 pgd-proxy
33.13 pglogical
33.14 repmgr
33.15 Configuring EDB Repos 2.0 repositories
33.16 Configuring APT repositories
33.17 Configuring YUM repositories
33.18 Creating and using a local repository
33.19 Installing from source
33.20 Git credentials
33.21 Environment
33.22 Python environment
33.23 Configuring /etc/hosts
33.24 Filesystem configuration
33.25 Uploading artifacts
33.26 ssh_key_file
33.27 Managing SSH host keys
33.28 Postgres source installation
33.29 Installing packages
33.30 Running initdb

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 3

228
229
230
231
232
233
234
236
237
240
242
243
246
248
251
252
256
258
259
261
266
267
268

33.31 Installing Postgres-related packages
33.32 SSL Certificates
33.33 Setting sysctl values
33.34 Creating Postgres databases
33.35 Creating Postgres tablespaces
33.36 Configuring .pgpass
33.37 The postgres Unix user
33.38 Creating Postgres users
33.39 tpaexec archive-logs
33.40 tpaexec download-packages
33.41 TPA custom commands
33.42 TPA custom tests
33.43 Configuring the beacon agent
33.44 Compliance
33.45 Locale
33.46 Patroni cluster management commands
33.47 pg_hba.conf
33.48 pg_ident.conf
33.49 Adding Postgres extensions
33.50 postgresql.conf
33.51 tpaexec deprovision
33.52 tpaexec info
33.53 tpaexec reconfigure

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 4

1 Trusted Postgres Architect

© Copyright EnterpriseDB UK Limited 2015-2025 - All rights reserved.

Introduction

TPA is an orchestration tool that uses Ansible to deploy Postgres clusters according to EDB's recommendations.

TPA embodies the best practices followed by EDB, informed by many years of hard-earned experience with deploying and supporting Postgres. These
recommendations are as applicable to quick testbed setups as to production environments.

What can TPA do?

TPA is built around a declarative configuration mechanism that you can use to describe a Postgres cluster, from its topology right down to the smallest
details of its configuration.

Start by running tpaexec configure to generate an initial cluster configuration based on a few high-level choices (e.g., which version of Postgres to
install). The default configuration is ready to use as-is, but you can edit it to suit your needs (the generated configuration is just a text file, config.yml).

Using this configuration, TPA can:

1. Provision servers (e.g., AWS EC2 instances or Docker containers) and any other resources needed to host the cluster (or you can deploy to existing
servers or VMs just by specifying connection details).

2. Configure the operating system (tweak kernel settings, create users and SSH keys, install packages, define systemd services, set up log rotation,
and so on).

3. Install and configure Postgres and associated components (e.g., PGD, Barman, pgbouncer, repmgr, and various Postgres extensions).

4. Run automated tests on the cluster after deployment.

5. Deploy future changes to your configuration (e.g., changing Postgres settings, installing and upgrading packages, adding new servers, and so on).

How do I use it?

To use TPA, you need to install it and run the tpaexec setup command. Follow the installation instructions for your platform.

TPA operates in four distinct stages to bring up a Postgres cluster:

Generate a cluster configuration
Provision servers (VMs, containers) to host the cluster
Deploy software to the provisioned instances
Test the deployed cluster

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 5

You can run TPA from your laptop, an EC2 instance, or any machine that can reach the cluster's servers over the network.

Here's a list of capabilities and supported software.

Configuration

The tpaexec configure command generates a simple YAML configuration file to describe a cluster, based on the options you select. The
configuration is ready for immediate use, but you can modify it to better suit your needs. Editing the configuration file is the usual way to make any
configuration changes to your cluster, both before and after it's created.

At this stage, you must select an architecture and a platform for the cluster. An architecture is a recommended layout of servers and software to set up
Postgres for a specific purpose. Examples include "M1" (Postgres with a primary and streaming replicas) and "PGD-Always-ON" (EDB Postgres Distributed
5 in an Always On configuration). A platform is a means to host the servers to deploy any architecture, e.g., AWS, Docker, or bare-metal servers.

Provisioning

The tpaexec provision command creates instances and other resources required by the cluster. The details of the process depend on the
architecture (e.g., M1) and platform (e.g., AWS) that you selected while configuring the cluster.

For example, given AWS access with the necessary privileges, TPA will provision EC2 instances, VPCs, subnets, routing tables, internet gateways, security
groups, EBS volumes, elastic IPs, etc.

You can also "provision" existing servers by selecting the "bare" platform and providing connection details. Whether these are bare metal servers or those
provisioned separately on a cloud platform, they can be used just as if they had been created by TPA.

You are not restricted to a single platform—you can spread your cluster out across some AWS instances (in multiple regions) and some on-premise
servers, or servers in other data centres, as needed.

At the end of the provisioning stage, you will have the required number of instances with the basic operating system installed, which TPA can access via
SSH (with sudo to root).

1. Configuration: decide what kind of cluster you
want
[tpa]$ tpaexec configure clustername --architecture M1 --platform aws
\
 --postgresql 14 \
 --failover-manager
repmgr

2. Provisioning: create the servers needed to host the
cluster
[tpa]$ tpaexec provision
clustername

3. Deployment: install and configure the necessary
software
[tpa]$ tpaexec deploy
clustername

4. Testing: make sure everything is working as
expected
[tpa]$ tpaexec test
clustername

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 6

Deployment

The tpaexec deploy command installs and configures Postgres and other software on the provisioned servers (which may or may not have been
created by TPA; but it doesn't matter who created them so long as SSH and sudo access is available). This includes setting up replication, backups, and so
on.

At the end of the deployment stage, Postgres will be up and running.

Testing

The tpaexec test command executes various architecture and platform-specific tests against the deployed cluster to ensure that it is working as
expected.

At the end of the testing stage, you will have a fully-functioning cluster.

Incremental changes

TPA is carefully designed so that provisioning, deployment, and testing are idempotent. You can run through them, make a change to config.yml, and run
through the process again to deploy the change. If nothing has changed in the configuration or on the instances, then rerunning the entire process will
not change anything either.

Cluster management

Once your cluster is up and running, TPA provides convenient cluster management functions, including configuration changes, switchover, and zero-
downtime minor-version upgrades. These features make it easier and safer to manage your cluster than making the changes by hand.

Extensible through Ansible

TPA supports a variety of configuration options, so you can do a lot just by editing config.yml and re-running provision/deploy/test. If you do need to go
beyond what TPA already supports, you can write

Custom commands, which make it simple to write playbooks to run on the cluster. Just create commands/xyz.yml in your cluster directory, and
invoke it using tpaexec xyz /path/to/cluster . Ideal for any management tasks or processes that you need to automate.

Custom tests, which augment the builtin tests with in-depth verifications specific to your environment and application. Using tpaexec test to
run all tests in a uniform, repeatable way ensures that you will not miss out on anything important, either when dealing with a crisis, or just during
routine cluster management.

Hook scripts, which are invoked during various stages of the deployment. For example, tasks in hooks/pre-deploy.yml will be run before the
main deployment; there are many other hooks, including post-deploy . This places the full range of Ansible functionality at your disposal.

It's just Postgres

TPA can create complex clusters with many features configured, but the result is just Postgres. The installation follows some conventions designed to
make life simpler, but there is no hidden magic or anything standing in the way between you and the database. You can do everything on a TPA cluster
that you could do on any other Postgres installation.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 7

Versioning in TPA

TPA previously used a date-based versioning scheme whereby the major version was derived from the year. From version 23 TPA transitioned to semantic
versioning, initially using a two-part major-minor pattern, then adopting full three-part semantic versioning in version 23.34.1. Under this scheme,
the major version is only incremented where required to comply with the backward compatibility principle below.

Backwards compatibility

A key development principle of TPA is to maintain backwards compatibility so there is no reason for users to need anything other than the latest version of
TPA. We define backwards compatibility as follows:

A config.yml created with TPA X.a will be valid with TPA X.b where b>=a

The cluster created from that config.yml will be maintainable and re-deployable with TPA X.b

Therefore, a new major version implies a break in backward compatibility. As such, we aim to avoid releasing major versions and will only do so in
exceptional circumstances.

Getting started

Follow the TPA installation instructions for your system, then configure your first cluster.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 8

2 Trusted Postgres Architect release notes

The Trusted Postgres Architect documentation describes the latest version of Trusted Postgres Architect 23.

Trusted Postgres Architect version Release Date

23.40.1 28 Oct 2025

23.40.0 02 Oct 2025

23.39.0 22 Aug 2025

23.38.1 25 Jun 2025

23.38.0 09 Jun 2025

23.37.0 24 Mar 2025

23.36.0 19 Feb 2025

23.35.0 25 Nov 2024

23.34.1 09 Sep 2024

23.34 22 Aug 2024

23.33 24 Jun 2024

23.32 15 May 2024

23.31 19 Mar 2024

23.30 19 Mar 2024

23.29 15 Feb 2024

23.28 23 Jan 2024

23.27 19 Dec 2023

23.26 30 Nov 2023

23.25 14 Nov 2023

23.24 17 Oct 2023

23.23 21 Sep 2023

23.22 06 Sep 2023

23.21 05 Sep 2023

23.20 01 Aug 2023

23.19 12 Jul 2023

23.18 23 May 2023

23.17 10 May 2023

23.16 21 Mar 2023

23.15 15 Mar 2023

23.14 23 Feb 2023

23.13 22 Feb 2023

23.12 21 Feb 2023

23.1-11 21 Jun 2023 to 31 Jan 2023

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 9

2.1 Trusted Postgres Architect 23.40.1 release notes

Released: 28 October 2025

This is a bug fixes release. The issues resolved in Trusted Postgres Architect 23.40.01 include the following:

Bug Fixes

Description Addresses

Fixed an issue whereby the PGD alter_node_option task would run for physical replicas.

In a PGD-AlwaysON cluster with a BDR node that is also a physical replica, the upgrade process would fail during the
alter_node_option task because a BDR node is expected to have RAFT enabled, but the physical replica BDR node does not. TPA

now skips this task on any node with the replica role, allowing upgrade to complete successfully.

51997

Fixed unnecessary output after deploy by removing the post-deploy check for pgbouncer_auth_function in pg_catalog.

TPA recently relocated the pgbouncer_auth_function used to authenticate users when pgbouncer is in use. This was done in an effort
to better follow the best practices and avoid issues during upgrade where pg_catalog function would not be part of the dump of the
database. TPA introduced a post deploy check to help users still relying on the auth function defined in pg_catalog to identify the
problem and make sure that they are able to fix it before removing the function from their systems. This check was used as a transition
mechanism and is now being removed. This resolves issues with unwanted output generated by that check.

100065

Fixed a misconfiguration of the .pgpass file when backup_name is used.

Previously, when using the backup_name variable, TPA would incorrectly use this name in pgpass for the Barman server. This has
been fixed and the documentation has been updated.

TPA now ensures EDB repos are used when Beacon Agent is included in a cluster.

TPA can deploy the Beacon Agent to monitor the health of a system. However, it needs access to a valid EDB repository. This change
ensures that the Standard repository is enabled when the Beacon Agent is to be deployed.

Fixed issue whereby Barman could not configure the log_file parameter correctly.

When setting up a barman node, the variable 'barman_log_file' was not setting up an alternative directory to place the log file. Instead,
it used the default location (/var/log/barman/barman.log). Bug and fix reported by voxnyx (https://github.com/voxnyx).

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 10

https://github.com/voxnyx

2.2 Trusted Postgres Architect 23.40.0 release notes

Released: 2 October 2025

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.40.0 include the following:

Enhancements

Description Addresses

Added support for upgrading EDB Postgres Distributed (PGD) v5 clusters to v6.

TPA now provides a workflow for upgrading an existing PGD-Always-ON cluster to a PGD-X cluster. Due to the significant differences
between these architectures, this is a multi-step process whereby you must first upgrade to PGD 5.9, then enable connection manager,
then finally upgrade to PGD 6. This process will be further automated in a future TPA release. Please refer to the TPA docs for full
details.

Extended support for configuring PGD-S clusters.

TPA now supports a full set of dedicated options for configuring a PGD-S cluster. The --layout option can be set to standard for
a one-location or near-far for a two-location layout. The --add-subscriber-only-nodes option adds up to 10 subscriber-
only nodes. The --read-write-port , --read-only-port , --http-port , and --use-https options control
Connection Manager's ports and HTTP API.

Introduced a pgd-proxy-config hook.

Introduced a hook to run tasks from pgd-proxy-config.yml at the end of PGD Proxy config, after core directories and files are
set but before the PGD Proxy service starts. Developers of the hook must ensure task idempotency. This hook will come in handy for
various post-configuration tasks e.g. making adjustments to PGD Proxy configuration not supported by TPA interface and other
relevant cluster-specific settings.

49911

Added three release.vip.* properties for EFM 5.1 and above.

Starting with EFM 5.1, there will be three new properties that control the timing of when the VIP is released by the primary agent (if a
VIP is used). This allows the user to avoid having the VIP released at the same time new database connections are being made, which
can lead to connection failures and a failure of switchover in some environments. The new properties are:
release.vip.background release.vip.pre.wait and release.vip.post.wait .

TPA now allows the RSA key size to be set for certificates.

Added a variable postgres_rsa_key_size , (default value is 2048) that can configure the size of the RSA key size for self-signed
TLS keys and certificates later used on the docker clusters.

Added a variable called pem_rsa_key_size , (default value is 4096) that can configure the size of the RSA key size for self-signed
TLS key and certificate later used on the PEM Server.

Added a variable called pem_db_ca_certificate_key_size , (default value is 4096) that can configure the size of the
database CA RSA key size used on the PEM Server.

Added a variable called ha_proxy_dhparams_key_size , (default value is 2048) that can configure the size of the RSA key size
used for ssl-dh-param-file within haproxy. Added a variable called openvpn_rsa_key_size , (default value is 4096) that can
configure the size of the RSA key size for self-signed TLS key and certificate later used on OpenVPN.

Added a variable called openvpn_dhparams_numbits_size , (default value is 2048) that can configure the number of the DH
numbits in dh2048.pem .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 11

Documented how TPA generates Postgres server TLS certificates and keys and how to override this.

Previously, the TPA docs mentioned that TPA generates default certs but not their names or paths. This change adds that information
and also explains how to replace these files with your own. We now document the previously undocumented ssl_* cluster vars for
this purpose. The new content is placed in postgresql.conf.md and linked from the original location postgres_user.md .

52049

Description Addresses

Changes

Description Addresses

TPA now supports EPAS clusters with repmgr as failover manager.

Until now, this combination wasn't supported by EDB. This support starts with EPAS 14 and is available as of now up to EPAS 17.

Bug Fixes

Description Addresses

Fixed an issue whereby backup wasn't configured in PGD 6 clusters.

Previously, when creating a new configuration for PGD 6, the barman node created wasn't used by any node. This change ensures that
when running "tpaexec configure" for PGD6 based architectures, each barman node configured will be used by a BDR node in the same
location.

Fixed support for update_host variable on PGD-Always-ON.

TPA is now able to honor the update_hosts option for minor Postgres and minor PGD5 upgrades when using PGD-Always-ON
architecture. By specifying the update_hosts option in the tpaexec upgrade command, TPA will now upgrade this subset of
nodes and leave the remaining nodes on the currently installed versions. This allows for more controlled upgrade that can be split into
multiple runs in order to better control and test the cluster along the upgrade process. When using this feature keep in mind best
practices such as updating write leaders last and testing in a dev/staging environment first.

52558,
45181

HAProxy health checks now correctly use HTTPS for SSL-enabled Patroni clusters.

Fixed a bug whereby HAProxy was incorrectly configured to use HTTP for health checks against Patroni nodes, even when the Patroni
REST API was secured with SSL (patroni_ssl_enabled: true). This misconfiguration caused health checks to fail, leading
HAProxy to mark healthy Patroni nodes as down. The HAProxy configuration logic has been updated to use check-ssl verify
none when patroni_ssl_enabled is true, ensuring that health checks are correctly performed over HTTPS.'

Fixed an issue with pgaudit extension when used with edbpge Postgres.

Previously, adding pgaudit to the list of Postgres extensions with the edbpge Postgres flavour would fail because the dictionary
for handling recognized extensions was missing an entry for edbpge and its corresponding package names. This entry has been
added, and additional logic incorporated to handle naming change for pgaudit packages from version 16 onwards.

Fixed an issue where global proxy routing was not set up correctly in PGD 5.9.

When creating a new configuration file via 'tpaexec configure -a PGD-Always-ON --pgd-proxy-routing global (...)', the configuration by
default will create a top group node with enable_proxy_routing & enable_raft equal to true, and subgroups enable_proxy_routing &
enable_raft equal to false. When creating a new configuration file via 'tpaexec configure -a PGD-Always-ON --pgd-proxy-routing local
(...)', the configuration by default will create a top group node with enable_proxy_routing equal to false & enable_raft equal to true,
subgroups have enable_proxy_routing & enable_raft equal to true. and subgroups enable_proxy_routing & enable_raft equal to false.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 12

TPA will now correctly skip the postgres/pgpass task on PEM-agent Barman nodes

The postgres/pgpass task runs on Postgres nodes with the pem-agent role in order to add the postgres_user to the
.pgpass file in this user's home directory. In previous versions, the task would also attempt to run on Barman nodes that have the

pem-agent role. This would fail since the directory does not exist. This task is now excluded for Barman nodes.

Description Addresses

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 13

2.3 Trusted Postgres Architect 23.39.0 release notes

Released: 22 August 2025

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.39.0 include the following:

Highlights

Support for s390x architectures
Support for edb_stat_monitor extension
EFM property support for auto.rewind , jdbc.properties , jdbc.loglevel , and check.vip.timeout

Enhancements

Description Addresses

Added support for PEM on Ubuntu 24.04.

There was no specific package defined for this distro which caused deployment errors. Additionally, this ensures that either mod_wsgi
or edb's mod_wsgi module is enabled by default where it applies.

Added edb_stat_monitor to recognized extensions.

When a user specifies edb_stat_monitor as an entry in either postgres_extensions or the list of extensions named under
postgres_databases , TPA will handle installing the correct package, creating the extension and including it in the
shared_preload_libraries .

Add support for s390x (aka IBM Z and LinuxONE)

TPA now supports the s390x CPU architecture. Supported s390x operating systems are RHEL 8 and 9 and SLES 15. TPA can run on
these systems and use them as target hosts for cluster deployment.

Because s390x binaries are not available for all PyPI packages, it is highly recommended that you install the tpaexec-deps
package from EDB rather than rely on installation from PyPI during setup. Similarly, because there is not a PGDG RPM repo for s390x
you must have access to EDB Repos for TPA to install Postgres and other cluster components from packages.

Added auto.rewind property for EFM 5.1 and above.

Starting with EFM 5.1, there will be a new property auto.rewind that is part of a new feature to attempt to rebuild failed primary
db servers.

Add EFM jdbc.properties property support

This adds support for the jdbc.properties property in EFM 5.0 and later.

Add jdbc.loglevel property for EFM 5.1 and above.

Starting with EFM 5.1, there will be a new property jdbc.loglevel that is used to increase information logged from the JDBC
driver. This property can be used to get more information when there are connection problems, e.g. when using ssl for database
connections.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 14

Add check.vip.timeout property for EFM 5.1 and above

Starting with EFM 5.1, there will be a new property check.vip.timeout that is used to control how long EFM will keep checking
is the VIP (if used) is reachable before promoting a standby.

Description Addresses

Changes

Description Addresses

Ubuntu 20.04 (Focal) is now a legacy distribution.

Ubuntu 20.04 is now out of support upstream and is no longer fully supported by TPA.

Removed support for obsolete EDB/2q repositories.

Now that the old 2q repositories and EDB Repos 1.0 are no longer available, TPA will not try to use them or check for configuration
related to them. All packages that were formerly available in those repositories are now available in the EDB Repos 2.0 repositories.

TPA will now suppress PGDG repos when using EDB repos on SLES.

When running tpaexec configure for a SLES system, use either EDB repositories or PGDG repositories, not both, matching the
behavior of other operating systems. This ensures that packages such as barman, which are available in both places, are consistently
sourced from the same repository as other packages.

TPA will now use bdr_package_version as default PGD Proxy version.

pgd_proxy_package_version and pgdcli_package_version may be explicitly defined in config.yml. If they are not
explicitly defined, they now default to the value of bdr_package_version , if it is set. If none of them is set, the latest available
versions of packages are installed. Setting these package versions to different values is not supported and is only useful for testing.

49150

Reduced default for vacuum_cost_delay to 2ms

In recent Postgres versions, the suggested default for vacuum_cost_delay has been reduced to 2ms. TPA now matches this.

Documented node promotability logic and the efm-not-promotable role for EFM.

Added a new section to the efm.md documentation that explains how TPA determines whether a node is eligible for promotion
during failover. The update clarifies the rules for promotability, including the roles of witness nodes, cascading standbys, and nodes
explicitly marked with the efm-not-promotable role. This enhancement should help users understand and control failover
behavior, reducing the risk of unintended promotions in EFM-managed clusters.

Document include_vars behavior for templated variables.

Since the include_vars module immediately parses and evaluates expressions, nested variables do not exist at the point they are
loaded from config.yml and thus are undefined when evaluated in templated expressions. This is now documented with an
example so it is clearer for users.

45722

Use Docker images from Rocky Linux organization.

TPA now uses the Rocky Linux organization's docker images rather than docker hub's "official" ones. These are more frequently
updated and hence less likely to cause dependency problems with newer packages.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 15

Updated architecture info for PGD 6 architectures.

The PGD6 architectures now have correct metadata and therefore appear as expected in the output of tpaexec info
architectures .

Description Addresses

Bug Fixes

Description Addresses

Fixed an issue whereby replication user was missing from .pgpass on the primary node.

The replication_user entry is required the .pgpass file for both replica and primary nodes managed by either efm
or patroni as the failover_manager . Previously, it was only added to the .pgass file for replica nodes, resulting in
connection issues to the primary node after a switchover.

48224

Fixed an issue whereby TPA would attempt to enable routing for subscriber-only groups in PGD6 clusters.

Previously, TPA would mistakenly try to enable routing for subscriber-only groups during PGD6 deployments. This property is not
editable anymore as it forms core part of the definition of subscriber-only groups in PGD6.

49673

Fixed an issue whereby PEM deployment would fail with PEM 10.1.1.

The TPA task Register PEM backend database server for monitoring and configuration explicitly calls the
pem.setup SQL function. This is not considered part of the public API of PEM and the signature changed between 10.1.0 and 10.1.1

causing TPA's call to this function to fail. This fix addresses the issue by adjusting the function call according to the installed PEM
server version. To accommodate this change we have introduced a new pem/server/facts Ansible role that is responsible for
collecting facts about the installed PEM version. This also means that TPA will no longer attempt to run postgresexpert.sql on
PEM 10, where Postgres Expert is no longer present.

Fixed an issue whereby `harp_dcs_user` was not created when using multiple failover managers 49150

Fixed an issue whereby bdr_node_groups could not be overridden.

If a file supplied in the --overrides-from argument to tpaexec configure sets bdr_node_groups in cluster_vars , the
contents of this will now be added to the node groups automatically created.

50550

Fixed issue whereby TPA would use pgdproxy user in DSN on PGD6 nodes.

Since PGD version 6 has a built-in Connection Manager which replaces PGD Proxy, the pgdproxy Postgres user should not be used
in any DSNs. A new variable bdr_connection_manager_route_dsn is introduced for defining connection strings to
Connection Manager. Users can additionally define bdr_connection_manager_dsn_attributes in their config.yml to
specify additional connection parameters in the DSN.

Fixed an issue with ignore_slots for Patroni clusters with multiple Barman servers.

For Patroni clusters TPA will now dynamically generate the ignore_slots setting corresponding to Barman nodes in the cluster. This
change ensures that Patroni will not remove the physical slots created for each of the Barman nodes. This is especially important for
the Patroni clusters with more than one backup servers; including shared Barman nodes for example. 50748

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 16

Fixed usability and improve reliability of the TPA Docker image.

Upgraded Base Image to Debian Trixie to meet TPA's Python 3.12 minimum requirement, ensuring compatibility with modern
dependencies.

Removed --use-community-ansible flag as it is no longer supported.
Included the openssh-client package to prevent tpaexec failures due to missing ssh-keygen , enhancing out-of-
the-box functionality.
Introduced Build-Time Versioning: Added an ARG variable to pass the output of git describe from the host during build,
storing it as /opt/EDB/TPA/VERSION for improved version tracking.
Revised docker/README.md and docs/src/INSTALL-docker.md to reflect the latest setup instructions and best
practices.

Fixed an issue whereby Barman could not run switch-wal .

For Postgres 15+, the Barman user is now created with the pg_checkpoint role. This allows Barman to run CHECKPOINT without
the need of being superuser, barman switch-wal --force will not fail any more.

Description Addresses

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 17

2.4 Trusted Postgres Architect 23.38.1 release notes

Released: 25 June 2025

Trusted Postgres Architect 23.38.1 is a bug-fix release that resolves the following issues:

Bug Fixes

Description Addresses

Fixed an issue with the configure command for PGD6 using bare platform.

Fixed a bug with tpaexec configure command on the newly released architecture for PGD6 (PGD-S and PGD-X) whereby trying to
generate a cluster using --platform bare would result in an Unknown Platform error. This fix ensures that the configure
command successfully generates a PGD6 configuration file for the bare platform.

49673

Fixed an issue whereby pgpass_users were not correctly added to the .pgpass file.

Previously, any user in the postgres_users list specified with generate_password: true AND included in the
pgpass_users list would NOT be added to the ~postgres/.pgpass file on the initial deploy because the user's password did

not yet exist when the pgpass task was executed, thus the user was skipped. This is fixed by invoking the pgpass task once more after
all the Postgres users have been created. The repmgr and replication users were previously included in the
default_pgpass_users list. They are now added to pgpass_users and hence to the .pgpass file as required by the

replication manager in use. The postgres_user (postgres or enterprisedb by default) is still part of the
default_pgpass_users list. If this is overridden by a pgpass_users list in config.yml that does NOT include
postgres_user , a PEM-enabled cluster will fail to register agents as it needs the encrypted postgres_user password. This is

fixed by adding the postgres_user to the ~postgres/.pgpass file as part of the PEM agent tasks.

Fixed an issue whereby an invalid cluster_vars dictionary would lead to a failed deploy or an unexpected configuration.

Previously, if an invalid dictionary is set as the cluster_vars dictionary in config.yml (such as cluster_vars variables
referencing other cluster_vars variables), TPA would swallow any Ansible errors by falling back to the default value of an empty
dictionary. This resulted in every cluster_vars variable being undefined, so each was set to it's TPA-default value. The resulting
cluster would be entirely different than what the user specified in their config.yml file. This is fixed by asserting that the
cluster_vars dictionary is defined and non-empty when the configuration file is loaded. Also as a final bailout, the
cluster_vars variable now no longer defaults to an empty dictionary. This allows Ansible to throw an error when creating
group_vars and terminate.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 18

2.5 Trusted Postgres Architect 23.38.0 release notes

Released: 9 June 2025

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.38.0 include the following:

Highlights

Support for deploying EDB Postgres Distributed version 6 in both Expanded and Essential architectures
Improvements to PgBouncer implementation including a mitigation for CVE-2025-2291
Support for PEM 10.1

Enhancements

Description Addresses

Support for PGD6 architectures.

TPA can now configure and deploy clusters using the PGD-X and PGD-S architectures based on PGD6 The PGD-S architecture
implements PGD Essential and the PGD-X architecture implements PGD Expanded. These architectures have sensible default
configurations and also accept various configure options to customize their behavior. PGD 6 deployments no longer include pgd-proxy;
instead, PGD's built-in Connection Manager is configured. Testing support for the new architectures is added.

Configure PEM to monitor Barman when both are present in a cluster.

When a cluster is configured with PEM enabled (using the --enable-pem option) and includes a Barman node, the following
actions are now performed automatically:

enable_pg_backup_api is set to true in config.yml
The pem-agent role is assigned to the Barman node
The Barman endpoint is registered with the local PEM agent.

These changes simplify setup and ensure seamless integration between PEM and Barman.

Added support for Rocky Linux 9 on AWS.

TPA now supports configuring a cluster using Rocky Linux 9.5 on the aws platform. This is now the default version for Rocky Linux on
AWS if a version is not specified.

Added support for pg_backup_api on SLES 15.

TPA will now configure pg_backup_api is on SUSE Linux Enterprise Server 15 (SLES 15) when PEM monitoring is enabled and a
Barman node is present in the cluster.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 19

Changes

Description Addresses

Treat PEM_DB_PORT as a string for PEM 10.1 and above.

PEM 10.1 adds support for multi-host connection strings from the web application to the backend servers. To support this change, the
PEM_DB_PORT parameter in PEM's config_setup.py file is now a string rather than an integer. While TPA does not yet support

deploying HA PEM configurations, TPA will now correctly set this parameter as a string when the PEM version is 10.1 or greater.

TPA will now skip repository checks when repo is excluded from tasks.

The repo tag is available for exclusion, but previously would only skip tasks under the sys/repositories role. Now it also skips
over the initialization tasks which check which repositories to use and the verifies the credentials to access them are provided.

Improved the behavior of postgres_package_version .

Setting postgres_package_version will now cause TPA to install the selected version of various postgres-related components
on Debian or Ubuntu systems installing EDB Postgres Advanced Server or EDB Postgres Extended Server. This avoids dependency
resolution problems when newer package versions are visible in repositories.

Added a new task selectors create_postgres_system_user and create_pgd_proxy_system_user .

Added new task selectors that allow to skip the postgres_user and pgd_proxy_user operating system user. This allows clusters to use
remote users created by a centralized user management such as NIS. This can be set in config.yml: cluster_vars:
excluded_tasks: - create_postgres_system_user - create_pgd_proxy_system_user

48601,443
88

TPA will now redirect PgBouncer to the new primary in M1 repmgr clusters during switchover.

TPA will now ensure that PgBouncer instances are redirected to the new primary node after using the switchover command in a
repmgr + PgBouncer cluster that has repmgr_redirect_pgbouncer set to true. The tpaexec switchover command will
now ensure that PgBouncer instance connect to the new primary node. A new revert_redirect variable can also be set as extra-
variable after a first switchover is done to revert back to the initial primary node.

Made key_id / gpgkey optional in custom repository definitions.

The key_id and gpgkey parameters (for apt and yum custom repositories definition) are not required by the underlying modules,
there are use cases where this is not easy to provide ahead of installation. With this change, TPA does not make it mandatory to
provide those in custom repository definitions.

Fixed verify-settings check in tpaexec test for PGD CLI 5.7.0+.

The output for the PGD CLI command pgd verify-settings changed in PGD 5.7.0. TPA now correctly parses the output when
using version above 5.7.0 of PGD CLI. Note, verify-settings will be deprecated along with other commands in future PGD releases.
those commands are now wrapper calling the new commands until the deprecation occurs.

Improved logic for granting permissions to barman_role .

TPA now uses the postgresql_privs module to apply the grant on barman_role , so that changes are only applied when
needed. In addition, in PGD clusters, TPA will use the bdr_database on second deploys so the DDL is replicated across the cluster
by PGD.

Documented cluster_vars variable templating in config.yml

Added documentation to explain correct templating procedure for variables defined under cluster_vars with a worked example
in order to avoid confusion from unexpected behavior associated with inventory variables not being defined when improperly
templated in config.yml .

48797

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 20

TPA will now raise an ArchitectureError for if an invalid CIDR is passed to --network flag during configure.

By default, the Python standard library ipaddress package enforces 'strict' interpretation of the CIDR, whereby the IP used should
be the network address of the range. Previously, any IP passed to the --network flag that contained host bits would dump a
stacktrace due to the raised ValueError. That exception is now caught and an ArchitectureError is raised to display a clear message to
the user about the --network parameter.

Added a default value for EFM application.name property.

If the EFM application.name property is not set for a node, TPA will use the Postgres cluster_name property as a default.
EFM uses this value when performing a switchover or when building a new standby database.

TPA now uses the EDB repository setup script on SUSE.

Previously, TPA did not use the EDB repository setup script on SUSE because it did not work on repeat deploys. Zypper would raise
because the repositories that the script attempts to install already exist, and require unique names. Now that the repository setup
script task is skipped if the repositories are already installed, this issue is not encountered.

Description Addresses

Bug Fixes

Description Addresses

TPA will now create the pgbouncer_get_auth() function in dedicated database.

The pgbouncer_get_auth() function was created in the pg_catalog schema and execute granted to the
pgbouncer_auth_user . This function was created in every database, but this was not necessary for PgBouncer. A failure may be

encountered during the pgd node upgrade process when this function was created in the pg_catalog schema as it is not
included in the dump created by pg_dump . A later task attempts to run a GRANT on this function and fails, as the function is not
restored since it was not originally dumped. Now this function is only created in a single database, named under the
pgbouncer_auth_database variable in config.yml , which defaults to pgbouncer_auth_database if not included. It is

only created if at least one instance with pgbouncer role is included in the cluster. A warning is also issued during deploy and
upgrade if any databases define this function under the pg_catalog schema, as a future TPA release may remove the function from
that schema. The pgbouncer_get_auth() function itself used by PgBouncer auth_query has been updated to address CVE-
2025-2291. This vulnerability allowed for authentication using expired passwords, potentially granting unauthorized access because
the auth_query mechanism did not consider the VALID UNTIL attribute set in PostgreSQL for user passwords.

42911,
45068

Fixed an issue whereby some tasks were incorrectly skipped when the --check option was used.

In PGD clusters without HARP, the Read current configuration file if exists task needs to run in check mode to
ensure we have the information available to correctly skip the following HARP check task. However, by default Ansible skips tasks
using the the shell module during check mode, meaning this task did not run, resulting in a spurious failure on subsequent tasks.
We now let Ansible know that this task has to be run.

Fixed a bug whereby settings added to `ignore_slots` via `cluster_vars['patroni_conf_settings']['bootstrap']['dcs']` were not merged
into the eventual config.

Fixed an issue where RAFT checks for BDR nodes with replica role were not skipped during upgrade.

Physical replication of a subscriber-only node can be achieved in a PGD cluster by installing repmgr as a failover-manager
and designating the subscriber-only node as the primary and listing another BDR data node as the backup ; this backup
node is given the replica role. This configuration would result in the PGD upgrade process failing, since TPA expects BDR data
nodes to have RAFT enabled, but the physical replica BDR data node (with both replica and bdr roles) by design does not. As a
fix, certain BDR-specific tasks in the upgrade process now skip any node that has a replica role, allowing for a successful upgrade.

46186

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 21

2.6 Trusted Postgres Architect 23.37.0 release notes

Released: 24 March 2025

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.37.0 include the following:

Highlights

The upgrade command now supports minor-version upgrades of Postgres in Patroni and EFM clusters
Upgrades in repmgr clusters have also been improved

Enhancements

Description Addresses

Minor-version Postgres upgrades for M1 + Patroni clusters

TPA can now upgrade Postgres to the latest minor version on an M1 cluster which uses Patroni as the failover manager. The upgrade
process stops Barman on any Barman server in the cluster, then upgrades the replicas in the cluster. Then it switches to one replica as
a temporary primary, upgrades Postgres on the original primary, and switches back to the original primary. Patroni's handling of the
cluster is paused during the process and resumed afterwards. Then Barman is restarted and cluster health checks are run.

102662

Improved minor-version Postgres upgrade for M1 + repmgr clusters

Witness nodes were previously omitted from upgrade, they are now upgraded along with replicas. Postgres service restart is now more
reliable and always run right after the package upgrade on the node is finished.

Minor-version Postgres upgrades for M1 + EFM clusters

TPA can now upgrade Postgres to the latest minor version on an M1 cluster which uses EFM as the failover manager. The upgrade
process stops Barman on any Barman server in the cluster, then upgrades the replicas in the clusters. Then it switches to one replica as
a temporary primary, upgrades Postgres on the original primary, and switches back to the original primary. The EFM agent is started
and stopped on the different servers at the correct times. Then Barman is restarted and cluster health checks are run.

103595

Separated changed from unchanged tasks in output

In TPA's default output plugin, tasks which return "ok" but with no changes are now separated from ones that have reported changes,
which are now highlighted in yellow.

Improved the speed of Docker instance deprovisioning

When deprovisioning docker instances, TPA now kills the container instead of stopping it, and does so to all the instances in parallel.

Added check.num.sync.period property for EFM 5.x

Starting with EFM 5.0, there is a new property check.num.sync.period that defines how often a primary agent will check to see
if num_sync needs to change on the primary database. This can now be specified in config.yml .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 22

Changes

Description Addresses

TPA will now copy EFM config files if they are removed, even if no configuration changes

If either the efm.nodes or efm.properties configuration files do not exist in the top-level EFM directory, the efm upgrade-
conf command copies them from the /raw directory, even if there have been no configuration changes. This amends previous
behavior that required a configuration change before the upgrade-conf command would run and copy files.

TPA will now verify that the URI for EDB repository setup is accessible

The EDB repos are set up using the setup script following the EDB Repos 2.0 documentation: piping the cURL output to bash for
execution. However, if a user passes a nonexistent EDB_SUBSCRIPTION_TOKEN or repository to cURL, the exit code gets silently
swallowed and replaced with a 0 because bash executes an empty input. In this version, a request is dispatched to a repository's GPG
key endpoint to ensure a 404 response is not returned before continuing to download the setup script. Additionally, tasks related to
EDB repository set up are now skipped if the repository has already been set up.'

TPA will now raise an ArchitectureError when BDR-Always-ON is configured with BDR version 5

An architecture error is now raised during tpaexec configure if --bdr-version 5 is passed with -a BDR-Always-ON
alerting the user that BDR version 5 should be used with PGD-Always-ON .

Bug Fixes

Description Addresses

Fixed shared_preload_libraries computation during deploy

Fixed a limitation of Ansible's handling of list ordering that would trigger unneeded and uncontrolled rewriting of the
shared_preload_libraries and subsequently require a Postgres service restart, even on second deployment scenarios with no

changes to the configuration.

Fixed an issue whereby unnecessary replication slots were created when configuring Patroni

When setting up a Patroni cluster, a replication slot was created for each etcd-only node. This caused problems because the unused
slots cause the WAL to accumulate. Slots are now only created for the DB servers.

Fixed patronictl switchover command usage

TPA will now correctly use --leader instead of the deprecated --master parameter when using patronictl switchover
command.

Fixed an issue with counting instances in BDR-Always-ON clusters containing PEM

Fixed a bug whereby in certain circumstances, TPA would incorrectly calculate the number of instances in a BDR-Always-ON cluster
with a PEM server, causing "tpaexec configure" to fail with "StopIteration".

Fixed an issue whereby a PEM server could be incorrectly picked as a cluster primary in EFM cluster.

If a cluster is created with a pem-server, that backend is not monitored by EFM, hence, that node shouldn't be included when
discovering a Postgres primary for the entire cluster. This behavior is now correctly implemented by TPA.

45279

Fixed duplicated lines in .pgpass files

Fixed a bug whereby extra lines could be added to .pgpass for the same user when re-running 'tpaexec deploy'.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 23

2.7 Trusted Postgres Architect 23.36.0 release notes

Released: 19 February 2025

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.36.0 include the following:

Highlights

Support for Ubuntu 24.04 and SLES 15 SP6
Version specifiers for all cluster components
Better support for EDB Failover Manager (EFM) 5

Enhancements

Description Addresses

Added support for package version specifiers for all cluster components

The following software packages now accept an --xxx-package-version option to the tpaexec configure command,
which populates xxx_package_version in the generated config.yml - barman - pgbouncer - beacon-agent - etcd - patroni -
pem-server - pem-agent - pg_backup_api - pgd_proxy - pgdcli - repmgr.

Added support for Ubuntu Noble 24.04

TPA runs on Ubuntu 24.04 and supports this OS as a target host. EDB packages for Ubuntu 24.04 will be generally available at the end
of March 2025. Before that, deployments needing EDB packages will likely fail.

Added support for EFM 5 "auto resume" properties

Starting with EFM 5.0, the auto.resume.period property has been broken into two properties, one for the startup case and one
for the db failure case. This change adds the correct properties based on the efm_version being used.

Added support for EFM 5 'backup.wal' property.

Starting with EFM 5.0, a new property 'backup.wal' has been added. This change adds the new property if the version of EFM is 5 or
higher.

Added support for SLES 15 SP6

When SLES is requested at configure-time, TPA will now install SLES 15 SP6. The Docker and EC2 images are now SP6, and the
systemd-sysvcompat package is installed on SLES, so that local boot-time scripts continue to work.

Changes

Description Addresses

Use the latest Barman from PGDG on RHEL-like systems

TPA previously defaulted to Barman 3.9 when installing from PGDG on a RHEL-like system, as a workaround for broken packages. More
recent barman packages are OK, so we now let yum install the latest packages.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 24

Set up EDB repositories via setup script for RedHat and Debian

This change simplifies EDB repository setup on TPA nodes into a single task for dnf , yum and apt package managers. This should
reduce the occurrence of unexpected HTTP errors when adding EDB repositories to target hosts.

Fixed documentation for efm_conf_settings

Previously, documentation stated "You can use efm_conf_settings to set any parameters, whether recognized by TPA or not. Where
needed, you need to quote the value exactly as it would appear in efm.properties" However, the efm.properties.j2 template
uses the values from efm_conf_settings as an Ansible dictionary, so the entries must be written in key: value form. yaml
cluster_vars: efm_conf_settings: notification.level: WARNING ping.server.ip: <well known
address in the network>

Bump Python dependency to version 3.12

TPA now requires Python 3.12. When installing TPA from EDB Repos 2.0, an appropriate Python interpreter will be installed
automatically.

Wait for protocol version update during PGD upgrade

During upgrade from PGD3 to PGD5, the protocol version update may take some time. The PGD 5 specific config changes will fail if
they are attempted before the protocol version change. We have added a wait to avoid such failures.

Update <clustername>.nodes when new nodes are added to an existing EFM cluster

In previous versions of TPA, when a new EFM node was added to config.yml , it was not listed in the Allowed node host
list on the existing EFM nodes in the cluster. The task which executes efm upgrade-conf and propagates the changes from
/raw/<clustername>.properties and /raw/<clustername>.nodes is now run when EITHER of these files are

changed. This results in the new EFM node being written to the <clustername>.nodes file and efm cluster-status
including it in the Allowed node host list .

Include PGPORT in the postgres user's .bashrc file

The PGPORT environment variable will now be exported as part of the postgres user's .bashrc file. It defaults to the port value
used by the selected postgres_flavour , or postgres_port if specified in the config file.

Description Addresses

Bug Fixes

Description Addresses

Fixed an issue whereby databases were created with the default parameters rather than as configured

In previous versions of TPA, in order to suppress the CREATE EXTENSION statement for extensions that do not require it (aka
'modules'), the entire postgres_databases hash was modified. This introduced a bug, since a new hash was created that ONLY
contained the database name and list of extensions , ignoring all other configuration settings for the database (owner ,
template , encoding etc). This resulted in databases being created with the default parameters rather than as configured. To fix

this, the modules are removed from the list of extensions and the resulting list is passed to the task which runs CREATE EXTENSION.

44539

Fixed an issue with shared_preload_libraries on Patroni clusters

Entries in shared_preload libraries are now treated correctly by Patroni. This fixes a bug whereby adding the pglogical extension to a
Patroni cluster via config.yml would fail.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 25

Fixed a bug whereby deploys would fail for distributions which have no additional repository setup commands for extensions

In previous versions of TPA, when postgis was added to extra_postgres_extensions or the extensions list of a
database in postgres_databases , deploys would fail for Debian, SLES and Ubuntu because their list of
repository_setup_commands was empty (only RHEL has an additional command to run crb enable). This empty list was

passed to the command module, which would fail with no command given , resulting in deployment failure. The
Automatically run additional repository setup commands for recognized extensions task is now

skipped if the distribution has no additional commands to run.

Fixed an issue whereby TPA attempted to create replication slots even when `repmgr_use_slot` was set to 0 41776

Set bdr_client_dsn_attributes as the default for pgd_proxy_dsn_attributes and pgd_cli_dsn_attributes

Because pgd-proxy and pgd-cli are written in Go and use a Go driver, they do not support the full set of parameter keywords supported
by libpq. In the case a cluster has installed pgd-proxy and/or pgd-cli and has configured bdr_client_dsn_attributes with
parameters that the Go driver does not support, two new configuration variables must be included: pgd_proxy_dsn_attributes
and pgd_cli_dsn_attributes , containing only additional DSN parameters that the Go driver supports. Conversely, if pgd-proxy
and pgd-cli are installed and bdr_client_dsn_attributes does not include any Go-incompatible parameters, the connection
strings for these tools will be configured with the attributes in bdr_client_dsn_attributes . This amends unexpected behavior
where the pgd_proxy_dsn_attributes and pgd_cli_dsn_attributes were defaulting to empty strings when not
defined, even though the user was expecting the parameters in bdr_client_dsn_attributes to be used.

44819

Use standard form of home directory for etcd

When creating the etcd user, TPA now refers to its home directory without a trailing slash, matching the usage of other tools like
'useradd'.

Fixed an issue whereby the cluster_ssh_port setting was not respected by Barman

The Barman configuration is now able to use custom ssh port set via the cluster_ssh_port in config.yml , which defaults to
22 if it is not set. The -p / --port flags are now included in the ssh command in barman.d.conf and barman-wal-
restore /`barman-wal-archive' commands respectively.

Description Addresses

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 26

2.8 Trusted Postgres Architect 23.35.0 release notes

Released: 25 November 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.35.0 include the following:

Highlights

Options for STIG/CIS compliance.
Support for PGD Lightweight architecture
Postgis is now a recognized extension.
Docker configure creates named networks with static IP addresses.
Support for RedHat Enterprise Linux 9 for ARM architectures.
Support for PostgreSQL, EDB Postgres Extended, and EDB Postgres Advanced Server 17.

Enhancements

Description Addresses

Support STIG/CIS compliance

TPA now supports command-line options to create a cluster configured to conform to many of the requirements of the STIG and CIS
security standards. These options cause TPA to set postgresql.conf settings as defined in the relevant standards, to install required
extensions, to configure other aspects of system behaviour such as filesystem permissions and user connection limits, and to check for
other requirements such as FIPS crypto standards which TPA can't directly impose. The clusters thus generated are not certified by TPA
to conform to the standards, but much of the groundwork of creating a conforming cluster is now automated.

Add support for PGD Lightweight architecture

TPA is now able to generate a PGD Lightweight architecture comprised of three nodes in two locations (2 nodes in Primary and one in
Disaster Recovery) designed to ease migrations from physical replication. Users can now run tpaexec configure lw -a
Lightweight --postgresql 15 .

Have configure create a user-defined network on Docker

The configure command will now automatically add a named network and static IP addresses to config.yml when Docker is the
selected platform. The network name is the same as the cluster name and the address range follows the existing semantics of the --
network option with the exception that only one subnet is used for the whole cluster rather than one per location. If a subnet prefix is
not specified by the user, TPA will attempt to select a prefix which results in a subnet large enough to fit the whole cluster. The key
ip_address may now be used to specify a static IP for a Docker instance as long as a named network is specified in the config.yml.

Added experimental support for using an existing Barman node as backup node in new cluster

When using an existing Barman node as a backup node in a new cluster, users can set barman_shared: true in the Barman
instance's vars with the platform set to bare and other information supplied as usual for bare instances. This change allows TPA to
skip some configuration steps that would otherwise fail due to usermod issues, as the Barman user already has running processes from
previous deployments. The shared Barman instance is treated as a bare instance, so the required access, including the Barman user's
access to the target PostgreSQL instances, must be already in place. Copying the Barman user's keys from the original cluster to the
new cluster can be used to achieve this, see the Barman section of the TPA documentation for detailed information.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 27

Add postgis to list of recognized extensions

The PostGIS package will automatically be added when a user specifies postgis as an entry in either postgres_extensions or
the list of extensions named under postgres_databases . Also enables the CRB (Code Ready Builder) repository for RHEL-
compatible distributions so PostGIS dependencies can be installed.

Enable EFM probes when a PEM agent is registered on an EFM node

The --efm-install-path and --efm-cluster-name flags are set when a PEM server is registered on an EFM node. The
Streaming Replication , Failover Manager Node Status and Failover Manager Cluster Info probes are

enabled when a PEM agent is registered on an EFM node.

Support RedHat Enterprise Linux 9 for ARM architectures

Packages are now published targeting RHEL 9 ARM64, and TPA supports deployments using this architecture and OS. Also updated the
list of supported AWS images to include the RedHat 9 ARM64 AMI provided by Amazon. The default instance_type for ARM64
EC2 instances has been updated from a1 to t4g , which is the current generation processor available for burstable general purpose
workloads.

Support PostgreSQL, EDB Postgres Extended, and EDB Postgres Advanced Server 17

Clusters can be configured to use PostgreSQL, EDB Postgres Extended and EDB Postgres Advanced Server version 17. Barman no
longer needs to install the postgres server package to get the pg_receivewal binary when using EDB Postgres Advanced Server 17
or EDB Postgres Extended 17 since the binary has been added to the client package for these versions. TPA raises an architecture error
when a cluster is configured with repmgr as the failover_manager as it is not available for Postgres 17. Updated documentation to
reflect supported versions.

Make password_encryption algorithm for efm Postgres user configurable.

Expose a configurable efm_user_password_encryption variable which should be set to either 'md5' or 'scram-sha-
256' depending on user requirements. This controls the auth-method for the efm Postgres user in pg_hba.conf and the
algorithm used for generating it's encrypted password. In clusters deployed with compliance configured to stig , the 'efm'
Postgres user's auth-method in pg_hba.conf will be set to scram-sha-256 since FIPS-enabled operating systems do not
allow md5 to be used.

Allow multiple addresses to be supplied with hostnames

When using the --hostnames-from option to tpaexec configure , you can now include two ip addresses on each line, which
will be included in the generated config.yml as public_ip and private_ip.

Description Addresses

Changes

Description Addresses

Remove deprecated PermissionStartOnly in postgres.service.j2 template

PermissionsStartOnly has been deprecated and is now achieved via ExecStartPost=+/bin/bash... syntax

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 28

The barman Postgres user is no longer a superuser

Certain required privileges are granted to Postgres role, barman_role , which is then granted to the barman Postgres user. This
avoids creating the barman user as a superuser. This role can also be granted to other Postgres users by adding it to their
granted_roles list using postgres/createuser . The barman_role is created as part of the Barman tasks; if Barman is

not used, this role will not be created. Therefore, the task that grants privileges to this role is only executed if the barman_role
username is in the list of Postgres users that are created. The 'barman' user now has NOSUPERUSER explicitly specified as a role
attribute. If a cluster was deployed with a previous TPA version (which created the 'barman' user as a superuser), deploying with this
version will remove the superuser role attribute from the barman user.

Add new option harp_local_etcd_only when using etcd with HARP

Add new optional var harp_local_etcd_only available when using etcd with HARP. This option tells HARP manager to connect
to local etcd node. This recommendation follows the best practices learnt by doing the same when bdr as consensus procotol is
being used. The default mode of adding multiple endpoints can lead to performance issues in some cases. This option is added to give
more control to the user.

Improve postgres-monitor script

Improve postgres-monitor script to better manage recoverable errors and add retries on network errors to ensure that it won't return
failure when it just didn't allow enough time for postgres service to be fully started.

Only add nodes with efm role to cluster efm.nodes file

Previously the pemserver and barman nodes were added to the Allowed node host list in EFM when they were not
relevant to EFM functions. Refactored the task that writes the efm.node configuration to only include those nodes that have efm
in their list of roles.

Description Addresses

Bug Fixes

Description Addresses

Fix tpaexec test for pgd-proxy config verification

Fixed a bug whereby the test that ensures the current pgd-proxy configuration matches the expected configuration would fail for
version < 5.5.0. This fix ensures that TPA won't try to query configuration keys added in version 5.5.0.

Fix case where primary_slot_name added for EFM compatibility interferes with bdr_init_physical

A primary_slot_name is configured on the primary node to ensure the old primary uses a physical slot for replication during an
EFM switchover. However, 'bdr_init_physical' attempts to use it for node initialisation and hangs indefinitely since the slot does not
exist in a PGD installation. This primary_slot_name is now conditionally set explicitly when the failover_manager is EFM
to avoid setting it unnecessarily.

Download correct bash-completion package version

If the pgdcli_package_version is specified in config.yml , the bash-completion package is incorrectly named
because the packages_for filter erroneously appends the pgdcli_package_version to the package name. This results in an
attempt to download a nonexistant package. The bash-completion package is now appended to the list after the
packages_for filter, since it's version is independent from the pgdcli_package_version .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 29

Fix an issue whereby in some cases error messages would be repeated even after successful tasks.

TPA now clears the error message stack after each task to ensure messages are not spuriously repeated

Fix issue that prevented the addition of replicas to Patroni clusters

Fixed an issue whereby new replicas in Patroni clusters would fail with errors related to replication slots.

Add pem-agent role on barman nodes at most once for M1 architecture

If --enable-pem and --enable-pg-backup-api are passed to tpaexec configure , pem-agent is added twice to the
barman node if it is also a witness . Fixed by consolidating both if statements together to only evaluate the conditions once.

Set pem_python_executable outside of the pkg role

Fixed a bug whereby if the user excluded the pkg selector, later PEM-related tasks would fail because the
pem_python_executable fact had not been set.

Description Addresses

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 30

2.9 Trusted Postgres Architect 23.34.1 release notes

Released: 9 September 2024

Trusted Postgres Architect 23.34.1 is a bug fix release which resolves the following issues:

Type Description

Bug
Fix

Fixed an issue whereby running deploy after a switchover fails for nodes with efm-witness role. The upstream-primary for EFM
nodes is determined using the facts gathered from Postgres. This previously failed for nodes with efm-witness roles since they do not
have Postgres. The task to determine upstream-primary is now run only on nodes with primary or replica roles.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 31

2.10 Trusted Postgres Architect 23.34 release notes

Released: 22 August 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.34 include the following:

Type Description

Enhancement TPA now has an efm-pre-config hook which runs after efm has been installed and its configuration directory and
user have been created, but before efm is configured. It can be used to install custom efm helper scripts.

Enhancement

TPA now has its own output plugin, which shows one line of information per task, omitting tasks for which even one line
would be uninformative. The lines are indented to enable TPA's control flow to be visible, and include color-coded
counts of successful, skipped, and ignored hosts. The fuller output can be turned on by setting
TPA_USE_DEFAULT_OUTPUT=true in your environment, or by adding the -v switch to the command line.

Enhancement
TPA now allows you to specify additional options when registering PEM agents by listing them under
pemagent_registration_opts in cluster_vars .

Enhancement

You can now provide your own web server certificates for use with the PEM server by including the names of the
certificate and key pair for use on the PEM server in config.yml under the cluster_vars or pem-server instance vars
pem_server_ssl_certificate and pem_server_ssl_key . TPA will copy them from the
ssl/pemserver directory of the cluster directory to the PEM server and configure Apache/httpd accordingly.

Enhancement
TPA now runs the EFM upgrade-conf command on new cluster deployments to benefit from the comments and
inline documentation that are added to both <cluster_name>.properties and <cluster_name>.nodes
files.

Enhancement
TPA can now set up EFM clusters using hostname resolution instead of IP addresses for bind.address value. This
can be invoked with tha --efm-bind-by-hostname option for the configure command or
`efm_bind_by_hostname: true

false` in
cluster_v
ars
section
of
config.y
ml.

Enhancement
TPA now supports setting the EFM properties that added in EFM 4.9: enable.stop.cluster: boolean,
default true , priority.standbys: default '' , detach.on.agent.failure: boolean,
default false , pid.dir: default '' .

Enhancement
TPA can now configure pgBouncer to use cert authentication for connections from pgBouncer to Postgres. This is
enabled by setting pgbouncer_use_cert_authentication to true in cluster_vars. When enabled, the
authentication method for users connecting to pgBouncer is also changed from md5 to scram-sha-256 .

Change TPA no longer supports RAID creation on AWS.

Change
Removed EFM dependency for resolving upstream_primary. Previously, EFM was queried for the current primary on a
deploy after a switchover. If EFM is not running, this will fail. Now the cluster_facts collected through Postgres are used
to determine the current primary after a switchover, removing the dependency on EFM.

Change
In EFM clusters, the upstream_primary is now correctly updated after switchover, resulting in the correct
auto.reconfigure setting be set on replicas. Standbys now follow the new primary.

Bug Fix
Fixed an issue whereby TPA would incorrectly apply proxy settings when accessing the Patroni API. The Ansible default
is to use a proxy, if defined. This does not work in the (rather common) case of an airgapped environment that needs a
proxy to download packages from the internet, because the proxy also intercepts (and disrupts) calls to the Patroni API.

Bug Fix
Fixed an issue whereby TPA would set PEM agent parameters on all instances that were only appropriate for the
pemserver instance.

Bug Fix Added missing entries for pgd-proxy and pgdcli default package name when using SLES operating system as target for
cluster nodes.

Bug Fix Fix an issue whereby TPA would fail to reload/restart postgres on existing nodes to re-read configuration changes and
the new node would therefore fail to connect to the cluster.

Bug Fix
Fixed an issue whereby when taking backups from a replica, barman could fail when taking its initial backup by timing
out waiting for WAL files. This is fixed by waiting for barman to complete its base backup before forcing a WAL segment
switch.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 32

Bug Fix Ensure that repmgr witness register command is used with the correct postgres_port value even when using
non-default postgres port for the upstream_primary postgres.

Bug Fix Fixed an issue whereby failover_manager override to repmgr would not work correctly when set at instance level for
subscriber-only nodes and their replicas in PGD clusters.

Bug Fix
Fixed two cases of incorrect cgroup detection: on MacOSX, we no longer try to read /proc/mounts . On systems
where /sys/fs/cgroup is ro but mounts under it are rw , TPA now correctly detects this.

Bug Fix Ensure we can verify the actual config set on pgd-proxy nodes for the newly added read_listen_port option in
pgd-proxy.

Bug Fix Fixed an issue that would prevent deployment with PEM 9.7.0. PEM 9.7.0 no longer depends on Apache at a package
level therefore to use Apache as the web server we install the packages explicitly.

Type Description

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 33

2.11 Trusted Postgres Architect 23.33 release notes

Released: 24 Jun 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.33 include the following:

Type Description

Enhancement TPA now supports Debian 12 Bookworm on the ARM64 CPU architecture.

Enhancement

PGD version 5.5 allows for proxy nodes to be configured as read endpoints, which direct read-only queries to a shadow node. TPA
supports this configuration option by setting a read_listen_port parameter under default_pgd_proxy_options and
pgd_proxy_options in config.yml . This parameter is included by default when the PGD version is 5.5 or greater. Users can

also specify the port numbers by passing --proxy-listen-port and proxy-read-listen-port arguments to the
tpaexec configure command.

Enhancement
TPA now supports deployment and configuration of the Beacon Agent on any Postgres node by assigning the role 'beacon-agent' or
using the --enable-beacon-agent option with configure .

Enhancement
Added support for postgres_wal_dir in Patroni deployments. When a custom postgres_wal_dir is specified in TPA
configuration, TPA will make sure to relay that option to the corresponding settings in the Patroni configuration file. That way, if
Patroni ever needs to rebuild a standby on its own, out of TPA, the standby will be properly set up with a custom WAL directory.

Enhancement When adding PgBouncer nodes in a Patroni cluster, TPA now configures Patroni with a on_role_change callback. That callback
takes care of updating the primary connection info in the PgBouncer nodes in response to failover and switchover events.

Enhancement
EDB now produces its own edb-patroni package instead of rebuilding the patroni packages from PGDG. TPA now allows
users to select between patroni and edb-patroni packages. The selection is made through the new TPA setting
patroni_package_flavour .

Change To work around broken Barman 3.10 packages in the PGDG repos, TPA now installs version 3.9 of Barman if using PGDG repos on an
RHEL-family system. This behavior can be overridden by explicitly setting barman_package_version in config.yml .

Change
The haproxy_bind_address is now set to 0.0.0.0 when Patroni is the failover manager. This resolves an issue with the
general default of 127.0.0.1 preventing communication between Postgres nodes and HA Proxy nodes. Users should change this
value to something more restrictive and appropriate for their cluster networking.

Change Task selectors are now consistently applied in the final stage of deployment. Consistency of task selectors in the tests is improved
and the examples of task selectors in the docs are now correct. All deploy-time hooks now have corresponding task selectors.

Change
If barman_package_version is set, TPA will now look at it when looking for the barman-cli package as well as for Barman
itself. This resolves an inconsistency which caused clusters using the downloader to fail when barman_package_version was
used.

Bug Fix Fixed an issue whereby required permissions on functions in the BDR database were not being granted to the HARP DCS user on a
witness node.

Bug Fix
Fixed an issue whereby docker provisioning failed with "read-only file system". On host systems running cgroup1 with docker
containers running recent OS images, tpaexec provision could fail to provision containers with an error message like "mkdir
/sys/fs/cgroup/tpa.scope: read-only file system". TPA will now detect this case and avoid it.

Bug Fix TPA now provides a clear error message if the user runs tpaexec cmd or tpaexec ping before provision.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 34

2.12 Trusted Postgres Architect 23.32 release notes

Released: 15 May 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.32 include the following:

Type Description

Enhancement
The M1 architecture now supports the following additional arguments to tpaexec configure : --location-names , --
primary-location , --data-nodes-per-location , --witness-only-location , and --single-node-
location . By combining these arguments, most common layouts can be specified without needing to edit config.yml .

Enhancement TPA now installs chrony during deploy, keeping the default config upon all except on AWS where we point to Amazon Time Sync
service.

Enhancement TPA now supports RHEL 8 and 9 on IBM Power (PPC64le).

Enhancement
Added a --force option to tpaexec relink . By default, relink doesn't modify targeted files if they already exist. With --
force , relink removes all existing targeted files then recreates them.

Enhancement TPA now supports Debian 12 x86.

Enhancement pg_failover_slots is now a recognized extension

Enhancement
The sql_profiler , edb_wait_states and query_advisor extensions are now automatically included for any pem-
agent node. The list of default extensions for pem-agent nodes can be overridden by including a list of
pemagent_extensions in config.yml . If this list is empty, no extensions will be automatically included.

Change TPA can now provision Docker clusters on hosts running cgroups 2 for all systems except RHEL 7. On newer systems (RHEL 9 or
Ubuntu 22.04), TPA will use cgroups 2 scopes for additional isolation between the host and the containers.

Change Updated AWS AMI versions to the latest versions.

Bug Fix

Fixed an issue whereby deploying to Debian 10 on AWS would fail with the message The repository 'http://cdn-
aws.deb.debian.org/debian buster-backports Release' does not have a Release file . The backports
repository for debian 10 (buster) is no longer available on deb.debian.org but the standard AWS AMI still refers to it, so we modify
/etc/apt/sources.list accordingly before attempting apt operations.

Bug Fix Fixed an issue whereby deployment would fail on AWS when assign_public_ip:no was set.

Bug Fix Fixed problems with various roles that caused mixed errors when trying to use custom users for barman and postgres, thereby
resulting in a failed deployment.

Bug Fix
Fixed an issue whereby deployments after the initial one could fail with an error like Unrecognised host=... in
primary_conninfo if the key ip_address was used to define the IP address.

Bug Fix
Fixed an error whereby tpaexec upgrade could invoke the relink script in a way which caused an error and showed an
unhelpful usage message for tpaexec relink .

Bug Fix
Fixed an issue whereby a task to reload Postgres was skipped resulting in the restore_command override not being removed from
postgresql.auto.conf

Bug Fix Fixed an issue whereby TPA did not change to the source directory before attempting to compile BDR from source.

Bug Fix Fixed an issue whereby TPA would require a valid 2ndQuadrant token even if one was not needed for the specified cluster.

Documentation Updated the tower/AAP documentation to include instructions on creating an AAP Execution Environment.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 35

2.13 Trusted Postgres Architect 23.31 release notes

Released: 19 Mar 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.31 include the following:

Type Description

Bug Fix Fixed a critical bug whereby deployments could fail due to a syntax error.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 36

2.14 Trusted Postgres Architect 23.30 release notes

Released: 19 Mar 2024

End-of-support for 2ndQuadrant Ansible

Please note that, per the previously issued deprecation notice, this release completely removes support for 2ndQuadrant Ansible, which is no
longer maintained. In addition, after Ansible 8 became the default in version 23.29, this version requires Ansible 8 or newer. To ensure you have
a compatible Ansible version, please run tpaexec setup after updating TPA as detailed in the documentation.

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.30 include the following:

Type Description

New Feature
TPA now provides a custom 'Execution Environment' image to be used in Ansible Automation Platform 2.4+ (Controller version 4+).
this image contains everything needed to run deployments via AAP. This image is built using ansible-builder and a python-alpine
lightweight base image.

Enhancement
TPA now automatically adds package names and shared preload library entries for a subset of extensions. For these specific
extensions, only the extension name is needed in the extra_postgres_extensions list or the the extensions list of a
database entry in postgres_databases .

Enhancement
The EDB Advanced Storage Pack package and shared preload library entry will automatically be added for bluefin when a user
specifies it as an extension and the postgres_version is 15 or greater.

Enhancement
Added a new 'provision_only' option for instances. If an instance has provision_only: true in config.yml, it will be
provisioned as normal but not added to the inventory which is seen by tpaexec deploy .

Change
Previous versions of TPA used to synchronize the source node's database structure to witness nodes. This was not necessary and the
synchronized schema was never be used or updated. To prevent this happening, TPA now explicitly sets "synchronize_structure" to
"none" when calling bdr.join_node_group() for witness nodes.

Change

Selective execution of tasks is now supported using custom selectors rather than Ansible tags. To run only tasks matching a certain
selector: tpaexec deploy . --included_tasks=barman . To skip tasks matching a certain selector: tpaexec deploy
. --excluded_tasks=ssh Task selectors can also be used by specifying the excluded_tasks or included_tasks
variables in config.yml .

Change
Ansible 2.9 is no longer supported, neither the community distribution nor the 2ndQuadrant fork. Users who have been using the --
skip-tags option to tpaexec deploy should move to the new --excluded_tasks option.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 37

2.15 Trusted Postgres Architect 23.29 release notes

Released: 15 Feb 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.29 include the following:

Type Description

Enhancement
Added support for storing the cluster vault password in the system keyring. This leverages python keyring module to store vault
password in the supported system keyring when keyring_backend is set to system (default for new clusters). This change
does not impact existing clusters or any clusters that set keyring_backend to legacy in config.yml.

Enhancement
The --ansible-version argument to tpaexec setup now accepts 8 or 9 as valid ansible versions, as well as the existing
2q or community , both of which imply ansible 2.9. The default is now 8 . Support for ansible 9 is experimental and requires

python 3.10 or above.

Bug Fix Fixed an issue whereby edb_repositories already defined in config.yml are not kept during reconfigure. Fixes bdr4 to pgd5 upgrade
scenario in air gapped environment.

Bug Fix TPA's postgres-monitor will now recognize the message "the database system is not yet accepting connections" as a
recoverable error.

Bug Fix TPA now correctly skips the postgres/config/final role on replicas when upgrading.

Bug Fix Fixed an issue whereby wildcards in package names were not respected when using package downloader on Debian and Ubuntu
systems.

Bug Fix The downloader now runs apt-get update before fetching packages on Debian and Ubuntu systems.

Bug Fix TPA now disables transaction streaming when CAMO is enabled in PGD clusters.

Bug Fix TPA now correctly configures Barman servers where selinux is enabled.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 38

2.16 Trusted Postgres Architect 23.28 release notes

Released: 23 Jan 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.28 include the following:

Type Description

Enhancement Added a new option postgres_log_file . This option sets the Postgres log file, whether logging through stderr or syslog. The
default is '/var/log/postgres/postgres.log', the previously hard-coded value.

Enhancement
Added a new hook barman-pre-config . This hook is invoked after Barman is installed and its user is set up but before it is
configured. It can be used for installing certificate files or other tasks which need the barman user to exist but which must be done
before Barman is started.

Enhancement The key elastic_ip on an AWS instance in config.yml can be set to an elastic IP address that has already been allocated in
order to assign it to this instance.

Change In Patroni clusters, TPA now sets up replicas before handing over control of the cluster to Patroni, rather than setting up the primary
only and letting Patroni set up the replicas.

Change

For new clusters, TPA will create the user specified by setting harp_manager_user (by default harpmanager), belonging to
the bdr_superuser role, and set HARP Manager to operate as this user instead of postgres superuser. This does not affect
the existing clusters where TPA will keep using postgres as the HARP Manager user, unless the user overrides this behavior by
explicitly setting harp_manager_user to a different value in config.yml .

Bug Fix Fixed an issue whereby TPA would erroneously attempt to install repmgr on an EFM cluster.

Bug Fix Fixed an issue whereby the TPA would return a non-zero exit code when the warning about 2q repositories was displayed despite
deploy having succeeded.

Bug Fix TPA will now interpret wildcards correctly on Debian-family systems when downloading packages for offline use.

Bug Fix Fixed an issue whereby TPA would attempt to use incorrect package names for repmgr when installing from PGDG repositories.

Bug Fix Fixed barman connection failure when using selinux and a custom barman home directory.

Bug Fix TPA will now use the correct cluster name in show-password and store-password commands when it is different from the
directory name

Bug Fix TPA will now error out cleanly if unavailable 2ndQuadrant repository keys are required.

Bug Fix TPA will now sanitize hostnames correctly when the --cluster-prefixed-hostnames option is used.

Bug Fix TPA will now ensure packages are correctly copied to the remote host when upgrading a cluster using a local repo.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 39

2.17 Trusted Postgres Architect 23.27 release notes

Released: 19 Dec 2023

Migration to EDB repositories

This release of TPA lays the groundwork for the decommissioning of the legacy 2ndQuadrant repositories. Existing configurations that use the
legacy repositories will continue to function until they are decommissioned, but a warning will be displayed. To update an existing
configuration to use EDB Repos 2.0, you may use tpaexec reconfigure --replace-2q-repositories .

Python interpreter

TPA now runs using a Python interpreter provided by the edb-python-39 package, which will be automatically installed as a dependency of
the tpaexec package. This allows us to keep TPA updated with security patches on older systems where the Python version is no longer
widely supported. This is a completely standard build of Python 3.9. If you prefer, you may run TPA using another interpreter. We recommend
3.9, versions older than 3.9 or newer than 3.11 are not supported.

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.27 include the following:

Type Description

Enhancement TPA now supports Oracle Linux 7, 8 and 9 on Docker.

Change TPA now requires Python 3.9-3.11 and depends on the package edb-python-39 to provide a suitable interpreter.

Change TPA will no longer configure any 2ndQuadrant repositories by default, instead it will select suitable repositories from EDB Repos 2.0.

Change TPA now provides a new --replace-2q-repositories argument to tpaexec reconfigure that will remove 2q
repositories from an existing config.yml and add suitable EDB repositories for the cluster's postgres flavour and BDR version.

Change TPA now sets file system permissions explicitly on more objects.

Change A new variable disable_repository_checks can be set to true in config.yml to bypass the usual check for EDB repositories
when deploying the PGD-Always-ON architecture.

Change TPA will now generate a primary_slot_name also on primary node to be used in case of switchover, to ensure the switched primary
will have a physical slot on the new primary.

Change TPA will now ensure that commit_scope for CAMO enabled partners is generated using existing config options from older BDR
versions when running tpaexec reconfigure command to prepare for major PGD upgrade. It also choses better defaults.

Bug fix Fixed an issue whereby postgres variables were rejected by Patroni due to validation rules.

Bug fix Fixed an issue whereby a user could not set a single barman_client_dsn_attributes with sslmode=verify-full .

Bug Fix TPA will now assign a lower default maintenance_work_mem to avoid out-of-memory errors.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 40

2.18 Trusted Postgres Architect 23.26 release notes

Released: 30 Nov 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.26 include the following:

Type Description

Enhancement TPA now supports Oracle Linux 9 on the Docker platform.

Enhancement Added --cluster-prefixed-hostnames option to tpaexec configure . This makes it easy to avoid hostname clashes
on machines hosting more than one docker cluster.

Change Added packages to enable Docker builds on Mac OS X.

Change When there are multiple PEM servers in a cluster, the agent running on a PEM server registers to its local server.

Change For PGD 5 clusters with CAMO. TPA will set timeout to 60s and require_write_lead to true by default.

Bug Fix Fixed an issue whereby CAMO config was not correctly set up when upgrading a PGD 3 cluster to PGD 5. Upgrade is now fully
supported for CAMO clusters.

Bug Fix Fixed an issue whereby hostname rather than bdr_node_name was used when fencing or unfencing a HARP node.

Bug Fix Fixed an issue whereby provision would be automatically run when deploy was invoked with options that suppress
deployment.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 41

2.19 Trusted Postgres Architect 23.25 release notes

Released: 14 Nov 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.25 include the following:

Type Description

Enhancement TPA now supports automated upgrades from PGD 3.7 to PGD 5.3 or above. Note, upgrading clusters with CAMO is not yet supported.

Enhancement TPA now supports EDB Advanced Server 16 and EDB Extended Server 16.

Change Various improvements to the upgrade process introduced with PGD 4 to PGD 5 upgrades have been backported to BDR-Always-ON
upgrades.

Change TPA now supports installing PEM on SLES.

Change TPA now explicitly sets permissions when creating some filesystem objects. This will be extended to all filesystem objects in a future
release.

Change TPA now adds a symlink to the pgd-cli config file for v1 so it can be run without having to specify the path via -f switch.

Change TPA now calls the alter_node_kind PGD function to ensure node kind is set correctly for BDR-Always-ON clusters using BDR
version 4.3 and above.

Change Default cluster configuration from now selects SLES 15 SP5 when SLES 15 is requested (previously SP4).

Bug Fix Fixed an issue which resulted in a checksum failure during tpaexec setup command for tpaexec-deps users.

Bug Fix Fixed an issue whereby pem_server_group was not correctly applied when pemworker was invoked meaning servers were not
grouped as expected in PEM.

Bug Fix Fixed an issue with the sys/sysstat role whereby sar was not scheduled to run on instances other than the Barman instance.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 42

2.20 Trusted Postgres Architect 23.24 release notes

Released: 17 Oct 2023

2ndQuadrant/ansible deprecation

2ndQuadrant/ansible is now deprecated and tpaexec setup now defaults to Community Ansible.

Support for using the 2ndQuadrant Ansible fork will be removed from TPA in April 2024 and the GitHub repository will be archived.

You should switch to Community Ansible, which is now the default. For the vast majority of users, this change will be transparent.

If you are using --skip-tags with 2ndQuadrant Ansible, be aware that this is not supported with TPA and Community Ansible. We plan to
provide an alternative to --skip-tags compatible with Community Ansible before the removal of 2ndQuadrant Ansible.

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.24 include the following:

Type Description

Change
tpaexec setup now defaults to using community ansible rather than 2ndQuadrant ansible. The option --use-2q-ansible can be

used to force the use of 2ndQuadrant ansible, which is now deprecated and will be removed in a future release. If you are using --skip-
tags , see the install documentation.

Change When a repository has been removed from edb_repositories in config.yml, tpaexec deploy now removes it from the nodes.

Change TPA will now detect when harp-proxy and harp-manager are running on the same node and use a different config file for harp-proxy.

Change The upgrade command will now update local repositories on target instances.

Bug Fix Fixed an issue whereby TPA did not respect postgres_wal_dir in pg_basebackup invocation

Bug Fix TPA will now accept repmgr as a failover manager for subscriber-only nodes in PGD clusters, allowing physical replication of such nodes.

Bug Fix Fixed a typo which prevented TPA building Ubuntu 22.04 Docker images.

Bug Fix TPA will now reject unsupported combination of the BDR-Always-ON architecture, the EDB Postgres Extended flavour, and PEM at
configure-time.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 43

2.21 Trusted Postgres Architect 23.23 release notes

Released: 21 Sep 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.23 include the following:

Type Description

Enhancement TPA now supports PostgreSQL 16. Please note, PostgreSQL 16 packages are not yet available in all supported repos, so not all
configurations will work until this is the case.

Change
When Postgres 16 or above is selected, TPA will not add any 2ndQuadrant repos by default. TPA will explicitly set
tpa_2q_repositories: [] in this case.

Change EFM is now configured to use JDK 11 by default on platforms where it is available.

Change Where no EDB Repositories are use, TPA will not exclude any packages from PGDG (previously Barman and psycopg2 were
excluded).

Change Added package names for etcd and Patroni to support installation on SLES.

Bug Fix Fixed an issue whereby Apache HTTPD service for PEM Server would not start on boot.

Bug Fix Fixed an issue whereby pg_backup_api tests were run with incorrect permissions causing them to fail.

Bug Fix Fixed an issue whereby Apache HTTPD service for pg_backup_api would not start on boot.

Bug Fix Fixed an issue whereby bdr.standby_slot_names and bdr.standby_slots_min_confirmed checks used the
incorrect schema on bdr3 clusters.

Bug Fix Fixed an issue whereby configuration keys for extensions were passed to Patroni in the incorrect format, resulting in 'WARNING:
Removing unexpected parameter'.

Bug Fix Fixed an issue when using the intermediate base image option for docker_images whereby the resulting image name was
incorrect.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 44

2.22 Trusted Postgres Architect 23.22 release notes

Released: 6 Sep 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.22 include the following:

Type Description

Change TPA is now an open source project! You can clone the source under the GPLv3 license from
GitHub.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 45

https://github.com/EnterpriseDB/tpa

2.23 Trusted Postgres Architect 23.21 release notes

Released: 5 Sep 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.21 include the following:

Type Description

Change The default M1 configuration now uses EDB Repos 2.0 if any EDB software is selected, otherwise PGDG is used. This only affects new
clusters.

Change You must now choose a failover manager explicitly when running tpaexec configure with the M1 architecture.

Bug fix Fixed an issue with creation of PGD subscriber-only nodes whereby TPA incorrectly required 'subscriber-only' to be set on the replica
instead of the upstream instance.

Bug fix TPA will now skip inapplicable tasks when deploying to containers even if you are using the 'bare' platform option (previously these were
skipped only if 'docker' was selected).

Bug fix Fixed an issue with permissions on /etc/edb whereby if you added the pgd-proxy role to a data node in a deployed PGD5 cluster, pgd-
proxy would fail to start because it did not have permissions to open pgd-proxy-config.yml.

Bug fix Fixed an issue whereby /var/log/postgres could end up with inappropriate permissions (0600) if a strict umask was set

Bug fix Fixed an issue whereby repeating tpaexec deploy on a Barman instance correctly registered with PEM would lose the PEM Agent
Barman configuration.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 46

2.24 Trusted Postgres Architect 23.20 release notes

Released: 01 Aug 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.20 include the following:

Type Description

New feature
TPA now supports upgrades from PGD 4 to PGD 5 by running the new command tpaexec reconfigure to generate a revised
config.yml and then tpaexec upgrade to perform the upgrade.

Enhancement Added a new subcommand tpaexec info validate that runs a checksum over the TPA installation and confirms that it
matches the one distributed with the package.

Change The update-postgres command has been replaced with the more general upgrade command.

Change TPA now explicitly adds tzdata-java when installing OpenJDK for Failover Manager on RHEL 8 or 9. This is a workaround for
this OpenJDK bug.

Change TPA now uses the latest available Debian AMIs on AWS (latest at the time of this release).

Change TPA now runs tpaexec provision automatically as part of tpaexec deploy or tpaexec upgrade if config.yml has
changed.

Bug fix Fixed a bug whereby TPA could attempt to use a non-existent user when running pgd-cli on pgd-proxy nodes.

Bug fix Fixed a bug whereby changes made by tpaexec relink were not committed to the Git repository correctly.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 47

https://access.redhat.com/solutions/7025428

2.25 Trusted Postgres Architect 23.19 release notes

Released: 12 Jul 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.19 include the following:

Type Description

New feature TPA now allows the creation of physical replicas of subscriber-only PGD nodes.

New feature TPA now supports the configuration of HTTP(S) HARP and PGD Proxy health probes.

New feature TPA now allows you to select Patroni as a failover manager with the M1 architecture. This support is experimental and not yet
recommended for use in production.

Enhancement TPA now allows you to set specific versions for edb-pgd-proxy and edb-bdr-utilities rather than always using the latest version.

Change On Debian-like systems, the package selection code now uses -dbg rather than -dbgsym for certain packages where applicable.

Change When configuring replication slots, TPA will now ensure that only valid characters are used in the primary_slot_name. Previously
TPA would use the inventory_hostname as a default, which could contain hyphens; these are now replaced with underscores.

Change The default Failover Manager version is now 4.7.

Bug fix Fixed an issue whereby PGD 3.7 to 4 upgrades would fail in TPA 23.18.

Bug fix Fixed an issue whereby TPA would include underscores in TLS certificate Common Names when deploying PEM. This is invalid and
would result in failure on some platforms.

Bug fix Fixed an issue whereby an incorrect etcd service name would be used on Debian-like platforms, preventing TPA from starting etcd.

Bug fix Fixed an issue whereby TPA could not install etcd packages on RHEL 8.

Bug fix Fixed an issue whereby the message Failed to commit files to git: b'' would be displayed during configure.

Bug fix
Fixed an issue whereby TPA would erroneously generate and overwrite Postgres user passwords when generate_password:
false .

Bug fix Fixed an issue whereby volume map creation on AWS failed to take account of region resulting in failures when using regions other
than eu-west-1.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 48

2.26 Trusted Postgres Architect 23.18 release notes

Released: 23 May 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.18 include the following:

Type Description

Enhancement TPA now uses pg_basebackup instead of repmgr for initial replica creation.

Enhancement TPA now supports SLES 15, excluding creation of local repositories for air-gapped deployments.

Enhancement TPA now supports minor-version upgrades of PGD5.

Enhancement TPA now runs improved tests when tpaexec test is executed.

Bug fix Fixed an issue whereby TPA attempted to use legacy 2ndQuadrant repositories on unsupported distributions.

Bug fix Fixed an issue whereby TPA didn't install pg_receivewal on Barman instances where it was required.

Bug fix Fixed an issue whereby TPA intermittently failed to create symlinks to block devices on AWS hosts during provisioning, causing
deploy to fail.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 49

2.27 Trusted Postgres Architect 23.17 release notes

Released: 10 May 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.17 include the following:

Type Description

Enhancement
Added a new --pgd-proxy-routing parameter to the configure command. This can be set to global or local . Local
routing will make every PGD-Proxy route to a write leader within its own location. Global routing will make every proxy route to a
single write leader, elected amongst all available data nodes across all locations.

Change Removed the --active-locations parameter from the configure command.

Enhancement TPA now supports Ubuntu 22.04

Change Updated the AWS AMIs used for RHEL 7 and 8.

Bug fix Fixed an issue whereby TPA would incorrectly remove groups from existing Postgres users.

Bug fix Fixed an issue whereby TPA would print an unhelpful error message when a git commit failed.

Bug fix Fixed an issue whereby group names were incorrectly sanitized and uppercase letters were converted to underscores rather than
lowercase ones.

Bug fix Fixed an issue whereby Postgres was not restarted when required after CAMO configuration.

Bug fix Fixed an issue with etcd changes, ensuring that they are now idempotent and avoiding unnecessary restarts of etcd on subsequent
deployments.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 50

2.28 Trusted Postgres Architect 23.16 release notes

Released: 21 Mar 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.16 include the following:

Type Description

Change The default PGD-Always-ON cluster is now one location with an associated subgroup containing two data nodes and one witness
node.

Change TPA now deploys pgd-proxy on all data nodes by default.

Enhancement Added a new option, --add-proxy-nodes-per-location N , which creates separate proxy instances

Enhancement TPA now adds a witness node automatically if --data_nodes_per_location is even and prints a warning if you specify a
cluster with only two locations

Change
The parameter --add-witness-only-location has been renamed to --witness-only-location because we're NOT
adding a location, but designating an already-named (in --location-names) location as witness-only.

Change You must now specify Postgres flavour and version explicitly at tpaexec configure time

Enhancement Added new CLI abbreviations for Postgres flavour and version, for example --postgresql 14 or --edbpge 15

Enhancement Improved handling and documentation of the various supported EDB software repositories

Change TPA no longer includes the PGDG repository by default for PGD-Always-ON clusters

Bug fix Fixed an issue whereby EDB Failover Manager was not selected as the failover manager for EPAS by default

Bug fix Fixed an issue whereby pglogical was unnecessarily installed in the M1 architecture

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 51

2.29 Trusted Postgres Architect 23.15 release notes

Released: 15 Mar 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.15 include the following:

Type Description

Minor change Changes to dependency mappings.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 52

2.30 Trusted Postgres Architect 23.14 release notes

Released: 23 Feb 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.14 include the following:

Type Description

Bug fix Fixes an error whereby package lists weren't correctly populated for PGD 3 and 4 configurations. (TPA-365)

Change Use multi-line BDR DCS configuration in HARP's config.yaml (TPA-360, RT90034)

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 53

2.31 Trusted Postgres Architect 23.13 release notes

Released: 22 Feb 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.13 include the following:

Type Description

Bug fix Don't enable old EDB repo with PGD-Always-ON and --epas .

Bug fix Fix error with PGD-Always-ON and --postgres-version 15 .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 54

2.32 Trusted Postgres Architect 23.12 release notes

Released: 21 Feb 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.12 include the following:

Type Description

Feature Introduce full support for EDB Postgres Distributed 5, including Commit At Most Once (CAMO) configuration support based on
commit scopes.

Feature Introduce support for EDB Postgres Extended repository and packages.

Enhancement

Preliminary support for configuring multi-region AWS clusters.

Multi-region clusters require manual setup of VPCs and VPC.

Enhancement Enable proxy routing (and, therefore, subgroup RAFT) automatically for --active-locations . Removes the configure option to
enable subgroup RAFT globally.

Bug fix Ensure the EDB_SUBSCRIPTION_TOKEN is not logged.

Bug fix Allow the user to suppress addition of the products/default/release repo to tpa_2q_repositories.

Bug fix

Ensure that nodes subscribe to bdr_child_group, if available.

In clusters with multiple subgroups, TPA did not expect instances to be subscribed to the replication sets for both the top group and
the subgroup, so it would incorrectly remove the latter from the node's subscribed replication sets.

Bug fix

Fail reliably with a useful error if Postgres doesn't start.

Due to an Ansible bug, the deployment wouldn't fail if Postgres did not start on some instances, but did start on others (for example,
due to a difference in the configuration). Continuing on with the deployment resulted in errors when trying to access cluster_facts
for the failed hosts later.

Bug fix

Don't call bdr.alter_node_replication_sets() on witnesses for BDR 4.3 and later.

This adjusts to a new restriction in BDR versions where witness nodes are not handled with a custom replication set configuration.

Bug fix Replace hardcoded "barman" references to enable use of the barman_{user,group} settings to customize the barman user and home
directory.

Bug fix Add shared_preload_libraries entries, where appropriate, for extensions mentioned under postgres_databases[*].extensions.

Bug fix Ensure that pgaudit does not appear before bdr in shared_preload_libraries (to avoid a known crash).

Bug fix Fix syntax error (DSN quoting) in pgd-cli config file.

Bug fix

Sort endpoints in pgd-proxy config to avoid file rewrites.

This will likely require a pgd-proxy restart on the next deploy (but it will avoid unnecessary future rewrites/restarts on subsequent
deploys).

Bug fix Fix an error while installing rsync from a local-repo on RH systems.

Bug fix Fix an error with Apache WSGI module configuration for PEM 9 on Debian systems.

Bug fix Don't remove the bdr extension if it has been created on purpose, even if it is unused.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 55

2.33 Trusted Postgres Architect 23.1 to 23.11 release notes

TPA 23.11

Released: 2023-01-31

Notable changes

TPA-180 Introduce experimental support for PGD-Always-ON architecture (to be released later this year). PGD-Always-ON architecture will use the
upcoming BDR version 5. Initial support has been added for internal purposes and will be improved in upcoming releases.

Minor changes

TPA-349 Bump dependency versions Bump cryptography version from 38.0.4 to 39.0.0 Bump jq version from 1.3.0 to 1.4.0
TPA-345 Change TPAexec references to TPA in documentation. Update the documentation to use 'TPA' instead of 'TPAexec' when referring to the
product.

TPA 23.10

Released: 2023-01-04

Minor changes

TPA-161 Introduce harp_manager_restart_on_failure setting (defaults to false) to enable process restart on failure for the harp-
manager systemd service

Bug Fixes

TPA-281 Delete FMS security groups when deprovisioning an AWS cluster Fixes a failure to deprovision a cluster's VPC because of unremoved
dependencies.
TPA-305 Add enterprisedb_password to pre-generated secrets for Tower
TPA-306 Prefer PEM_PYTHON_EXECUTABLE, if present, to /usr/bin/python3 Fixes a Python module import error during deployment with PEM 9.0.
TPA-219 Make pem-agent monitor the bdr_database by default on BDR instances

TPA 23.9

Released: 2022-12-12

Bugfixes

TPA-301 Fix auto-detection of cluster_dir for Tower clusters When setting cluster_dir based on the Tower project directory, we now correctly check
for the existence of the directory on the controller, and not on the instances being deployed to.
TPA-283 Add dependency on psutil, required for Ansible Tower.
TPA-278 Remove "umask 0" directive from rsyslog configuration, which previously resulted in the creation of world-readable files such as
rsyslogd.pid .
TPA-291 Respect the postgres_package_version setting when installing the Postgres server package to obtain pg_receivewal on Barman instances.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 56

TPA 23.8

Released: 2022-11-30

Notable changes

TPA-18 Support Ansible Tower 3.8 This release supports execution of deploy.yml (only) on a bare cluster (i.e., with existing servers) through
Ansible Tower 3.8. Install TPAexec on the Tower server and run tpaexec setup to create a virtual environment which can be used in Tower
Templates to run TPAexec playbooks. Use the --use-ansible-tower and --tower-git-repository configure options to generate a
Tower-compatible cluster configuration. For details, see Ansible Tower.

Minor changes

TPA-238 Initialise the cluster directory as a git repository If git is available on the system where you run TPAexec, tpaexec configure will
now initialise a git repository within the cluster directory by default. If git is not available, it will continue as before. To avoid creating the
repository (for example, if you want to store the cluster directory within an existing repository), use the --no-git option.

TPA 23.7

Released: 2022-11-09

Notable changes

TPA-234 Support the community release of Ansible 2.9 TPAexec used to require the 2ndQuadrant/ansible fork of Ansible 2.9. In this release, you
may instead choose to use the community release of Ansible with the tpaexec setup --use-community-ansible . For now, the default
continues to be to use 2ndQuadrant/ansible. This will change in a future release; support for 2ndQuadrant/ansible will be dropped, and Ansible will
become the new default.

Minor changes

TPA-209 Accept --postgres-version 15 as a valid tpaexec configure option, subsequent to the release of Postgres 15
TPA-226 Accept IP addresses in the --hostnames-from file Formerly, the file passed to tpaexec configure was expected to contain one
hostname per line. Now it may also contain an optional IP address after each hostname. If present, this address will be set as the ip_address
for the corresponding instance in config.yml. (If you specify your own --hostnames-from file, the hostnames will no longer be randomised by
default.)
TPA-231 Add a new bdr-pre-group-join hook This hook is executed before each node joins the BDR node group. It may be used to change the
default replication set configuration that TPAexec provides.
TPA-130 Use the postgresql_user module from community.postgresql The updated module from the community.postgresql collection is needed in
order to correctly report the task status when using a SCRAM password (the default module always reports changed).
TPA-250 Upgrade to the latest versions of various Python dependencies

Bugfixes

TPA-220 Ensure LD_LIBRARY_PATH in .bashrc does not start with ":"
TPA-82 Avoid removing BDR-internal ${group_name}_ext replication sets
TPA-247 Fix "'str object' has no attribute 'node_dsn'" errors on AWS The code no longer assigns hostvars[hostname] to an intermediate
variable and expects it to behave like a normal dict later (which works only sometimes). This fixes a regression in 23.6 reported for AWS clusters
with PEM enabled, but also fixes other similar errors throughout the codebase.
TPA-232 Eliminate a race condition in creating a symlink to generated secrets in the inventory that resulted in "Error while linking: [Errno 17] File
exists" errors
TPA-252 Restore code to make all BDR nodes publish to the witness-only replication set This code block was inadvertently removed in the v23.6
release as part of the refactoring work done for TPA-193.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 57

https://techsupport.enterprisedb.com/customer_portal/sw/tpa/trunk/238/#

TPA 23.6

Released: 2022-09-28

Notable changes

TPA-21 Use boto3 (instead of the unmaintained boto2) AWS client library for AWS deployments. This enables SSO login and other useful features.
TPA-202 Add harp-config hook. This deploy-time hook executes after HARP is installed and configured and before it is started on all nodes where
HARP is installed.

Bugfixes

TPA-181 Set default python version to 2 on RHEL 7. Formerly, tpaexec could generate a config.yml with the unsupported combination of RHEL 7
and python 3.
TPA-210 Fix aws deployments using existing security groups. Such a deployment used to fail at provision-time but will now work as expected.
TPA-189 Remove group_vars directory on deprovision. This fixes a problem that caused a subsequent provision to fail because of a dangling
symlink.
TPA-175 Correctly configure systemd to leave shared memory segments alone. This only affects source builds.
TPA-160 Allow version setting for haproxy and PEM. This fixes a bug whereby latest versions of packages would be installed even if a specific
version was specified.
TPA-172 Install EFM on the correct set of hosts. EFM should be installed only on postgres servers that are members of the cluster, not servers
which have postgres installed for other reasons, such as PEM servers.
TPA-113 Serialize PEM agent registration. This avoids a race condition when several hosts try to run pemworker --register-agent at the same time.

TPA 23.5

Released: 2022-08-23

Notable changes

TPA-81 Publish tpaexec and tpaexec-deps packages for Ubuntu 22.04 Jammy
TPA-26 Support harp-proxy and harp-manager installation on a single node. It is now possible to have both harp-proxy and harp-manager service
running on the same target node in a cluster.

TPA 23.4

Released: 2022-08-03

Bugfixes

TPA-152 fix an issue with locale detection during first boot of Debian instances in AWS Hosts would fail to complete first boot which would
manifest as SSH key negotiation issues and errors with disks not found during deployment. This issue was introduced in 23.3 and is related to TPA-
38

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 58

TPA 23.3

Released: 2022-08-03

Notable changes

TPA-118 Exposed two new options in harp-manager configuration. The first sets HARP harp_db_request_timeout similar to dcs
request_timeout but for database connections and the second harp_ssl_password_command specifies a command used to de-obfuscate
sslpassword used to decrypt the sslkey in SSL enabled database connection

Minor changes

TPA-117 Add documentation update on the use of wildcards in package_version options in tpaexec config.yml. This introduces a warning
that unexpected package upgrades can occur during a deploy operation. See documentation in tpaexec-configure.md for more info
TPA-38 Add locale files for all versions of Debian, and RHEL 8 and above. Some EDB software, such as Barman, has a requirement to set the user
locale to en_US.UTF-8 . Some users may wish to also change the locale, character set or language to a local region. This change ensures that OS
files provided by libc are installed on AWS instances during firstboot using user-data scripts. The default locale is en_US.UTF-8 . See
platform_aws.md documentation for more info

TPA-23 Add log config for syslog for cluster services Barman, HARP, repmgr, PgBouncer and EFM. The designated log server will store log files
received in /var/log/hosts directories for these services
TPA-109 Minor refactoring of the code in pgbench role around choosing lock timeout syntax based on a given version of BDR

Bugfixes

TPA-147 For clusters that use the source install method some missing packages for Debian and Rocky Linux were observed. Debian receives library
headers for krb5 and lz4. On RedHat derived OSs the mandatory packages from the "Development Tools" package group and the libcurl headers
have been added
TPA-146 Small fix to the method of package selection for clusters installing Postgres 9.6
TPA-138 Addresses a warning message on clusters that use the "bare" platform that enable the local-repo configure options. As the OS is not
managed by TPAexec in the bare platform we need to inform the user to create the local-repo structure. This previously caused an unhandled error
halting the configure progress
TPA-135 When using --use-local-repo-only with the "docker" platform and the Rocky Linux image initial removal of existing yum
repository configuration on nodes would fail due to the missing commands find and xargs . This change ensures that if the findutils
package exists in the source repo it will be installed first
TPA-111 Remove a redundant additional argument on the command used to register agents with the PEM server when --enable-pem option is
given. Previously, this would have caused no problems as the first argument, the one now removed, would be overridden by the second
TPA-108 Restore SELinux file context for postmaster symlink when Postgres is installed from source. Previously, a cluster using a SELinux enabled
OS that is installing postgres from source would fail to restart Postgres as the systemd daemon would be unable to read the symlink stored in the
Postgres data bin directory. This was discovered in tests using a recently adopted Rocky Linux image in AWS that has SELinux enabled and in
enforcing mode by default

TPA 23.2

Released: 2022-07-13

Notable changes

Add support for Postgres Backup API for use with Barman and PEM. Accessible through the --enable-pg-backup-api option.
SSL certificates can now be created on a per-service basis, for example the server certificate for Postgres Backup API proxy service. Certificates will
be placed in /etc/tpa/<service>/<hostname>.cert These certificates can also be signed by a CA certificate generated for the
cluster.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 59

Placement of Etcd for the BDR-Always-ON architecture When using 'harp_consensus_protocol: etcd', explicitly add 'etcd' to the role for each of the
following instances:

BDR Primary ('bdr' role)
BDR Logical Standby ('bdr' + 'readonly' roles)
only for the Bronze layout: BDR Witness ('bdr' + 'witness' roles)
only for the Gold layout: Barman ('barman' role) Credit: Gianni Ciolli gianni.ciolli@enterprisedb.com

Minor changes

Replace configure argument --2q with --pgextended to reflect product branding changes. Existing configuration will retain expected
behaviour.
Improve error reporting on Docker platform compatibility checks when using version 18 of docker, which comes with Debian old stable.
Add some missing commands to CLI help documentation.
Improved error reporting of configure command.
Add initial support for building BDR 5 from source. Credit: Florin Irion florin.irion@enterprisedb.com
Changes to ensure ongoing compatibility for migration from older versions of Postgres with EDB products.

Bugfixes

Fixed an issue which meant packages for etcd were missing when using the download-packages command to populate the local-repo.
Fixed an issue affecting the use of efm failover manager and the selection of its package dependencies

TPA 23.1

Released: 2022-06-21

This release requires you to run tpaexec setup after upgrading (and will fail with an error otherwise)

Changes to package installation behavior

In earlier versions, running tpaexec deploy could potentially upgrade installed packages, unless an exact version was explicitly specified (e.g., by
setting postgres_package_version). However, this was never a safe, supported, or recommended way to upgrade. In particular, services may not have
been safely and correctly restarted after a package upgrade during deploy.

With this release onwards, tpaexec deploy will never upgrade installed packages. The first deploy will install all required packages (either a specific
version, if set, or the latest available), and subsequent runs will see that the package is installed, and do nothing further. This is a predictable and safe
new default behavior.

If you need to update components, use tpaexec update-postgres . In this release, the command can update Postgres and Postgres-related
packages such as BDR or pglogical, as well as certain other components, such as HARP, pgbouncer, and etcd (if applicable to a particular cluster). Future
releases will safely support upgrades of more components.

Notable changes

Run "harpctl apply" only if the HARP bootstrap config is changed WARNING: This will trigger a single harp service restart on existing clusters when
you run tpaexec deploy , because config.yml is changed to ensure that lists are consistently ordered, to avoid unintended changes in future
deploys
Add tpaexec download-packages command to download all packages required by a cluster into a local-repo directory, so that they can be
copied to cluster instances in airgapped/disconnected environments. See air-gapped.md and local-repo.md for details
Require --harp-consensus-protocol <etcd|bdr> configure option for new BDR-Always-ON clusters TPAexec no longer supplies a
default value here because the choice of consensus protocol can negatively affect failover performance, depending on network latency between
data centres/locations, so the user is in a better position to select the protocol most suitable for a given cluster. This affects the configuration of
newly-generated clusters, but does not affect existing clusters that use the former default of etcd without setting harp_consensus_protocol
explicitly

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 60

mailto:gianni.ciolli@enterprisedb.com
mailto:gianni.ciolli@enterprisedb.com
mailto:florin.irion@enterprisedb.com
mailto:florin.irion@enterprisedb.com

Minor changes

Install openjdk-11 instead of openjdk-8 for EFM on distributions where the older version is not available
Accept harp_log_level setting (e.g., under cluster_vars) to override the default harp-manager and harp-proxy log level (info)
Configure harp-proxy to use a single multi-host BDR DCS endpoint DSN instead of a list of individual endpoint DSNs, to improve resilience
Omit extra connection attributes (e.g., ssl*) from the local (Unix socket) DSN for the BDR DCS for harp-manager

Bugfixes

Ensure that harp-manager and harp-proxy are restarted if their config changes
Fix harp-proxy errors by granting additional (new) permissions required by the readonly harp_dcs_user
Disable BDR4 transaction streaming when CAMO is enabled If bdr.enable_camo is set, we must disable bdr.default_streaming_mode, which is not
compatible with CAMO-protected transactions in BDR4. This will cause a server restart on CAMO-enabled BDR4 clusters (which could not work
with streaming enabled anyway).

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 61

3 TPA installation

To use TPA, you need to install from packages or source and run the tpaexec setup command. This document explains how to install TPA packages.
If you have an EDB subscription plan, and therefore have access to the EDB repositories, you should follow these instructions. To install TPA from source,
please refer to Installing TPA from Source.

See Distribution support for information on what platforms are supported.

Info

Please make absolutely sure that your system has the correct date and time set, because various things will fail otherwise. We recommend you
use a network time, for example sudo ntpdate pool.ntp.org

Quickstart

First, subscribe to an EDB repository.

Install TPA

Install additional dependencies

Verify installation (run as a normal user)

More detailed explanations of each step are given below.

Where to install TPA

As long as you are using a supported platform, TPA can be installed and run from your workstation. This is fine for learning, local testing or demonstration
purposes. TPA supports deploying to Docker containers should you wish to perform a complete deployment on your own workstation.

For production use, we recommend running TPA on a dedicated, persistent virtual machine. We recommend this because it ensures that the cluster
directories are retained and available to your team for future cluster management or update. It also means you only have to update one copy of TPA and
you only need to provide network access from a single TPA host to the target instances.

sudo <your-package-manager> install tpaexec

sudo /opt/EDB/TPA/bin/tpaexec
setup

/opt/EDB/TPA/bin/tpaexec
selftest

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 62

https://www.enterprisedb.com/docs/repos/getting_started/

Installing TPA packages

To install TPA, you must first subscribe to an EDB repository. TPA is available in all EDB repositories.

Install TPA as follows:

Install on Debian or Ubuntu

Install on RHEL, Rocky, AlmaLinux or Oracle Linux

SLES

This will install TPA into /opt/EDB/TPA . It will also ensure that other required packages (e.g., Python 3.12 or later) are installed.

We mention sudo here only to indicate which commands need root privileges. You may use any other means to run the commands as root.

Setting up the TPA Python environment

Next, run tpaexec setup to create an isolated Python environment and install the correct versions of all required modules.

Note

On Ubuntu versions prior to 20.04, please use sudo -H tpaexec setup to avoid subsequent permission errors during tpaexec
configure

You must run this as root because it writes to /opt/EDB/TPA , but the process will not affect any system-wide Python modules you may have installed
(including Ansible).

Add /opt/EDB/TPA/bin to the PATH of the user who will normally run tpaexec commands. For example, you could add this to your .bashrc or
equivalent shell configuration file:

sudo apt-get install tpaexec

sudo dnf install
tpaexec

sudo zypper install
tpaexec

sudo /opt/EDB/TPA/bin/tpaexec
setup

export PATH=$PATH:/opt/EDB/TPA/bin

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 63

https://www.enterprisedb.com/docs/repos/getting_started/

Installing TPA without internet or network access (air-gapped)

This section describes how to install TPA onto a server which cannot access either the EDB repositories, a Python package index, or both. For information
on how to use TPA in such an environment, please see Managing clusters in a disconnected or air-gapped environment

Downloading TPA packages

If you cannot access the EDB repositories directly from the server on which you need to install TPA, you can download the packages from an internet-
connected machine and transfer them. There are several ways to achieve this.

If your internet-connected machine uses the same operating system as the target, we recommend using yumdownloader (RHEL-like) or apt
download (Debian-like) to download the packages.

Alternatively, you can download packages for any platform from your browser by visiting EDB Repos and selecting either 'Enterprise', 'Standard' or
'Community 360' under the heading 'Download EDB software packages from your browser'. To install TPA you need these packages:

tpaexec
tpaexec-deps
edb-python312

Once you have transferred the downloaded packages to the target server, you must install them using the appropriate tool for your platform.

Installing without access to a Python package index

When you run tpaexec setup , it will ordinarily download the Python packages from a Python package index. Unless your environment provides a
different index the default is the official PyPI. If no package index is available, you should install the tpaexec-deps package in the same way your
installed tpaexec . The tpaexec-deps package (available from the same repository as tpaexec) bundles everything that would have been
downloaded, so that they can be installed without network access. Just install the package before you run tpaexec setup and the bundled copies will
be used automatically.

Verifying your TPA installation

Once you're done with all of the above steps, run the following command to verify your local installation:

If that command completes without any errors, your TPA installation is ready for use.

Upgrading TPA

To upgrade to a later release of TPA, you must:

1. Install the latest tpaexec package
2. Install the latest tpaexec-deps package (if required; see above)
3. Run tpaexec setup again

If you have subscribed to the TPA package repository as described above, running apt-get update && apt-get upgrade or yum update
should install the latest available versions of these packages. If not, you can install the packages by any means available.

We recommend that you run tpaexec setup again whenever a new version of tpaexec is installed. Some new releases may not strictly require

tpaexec
selftest

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 64

https://www.enterprisedb.com/repos
https://pypi.org/

We recommend that you run tpaexec setup again whenever a new version of tpaexec is installed. Some new releases may not strictly require
this, but others will not work without it.

Ansible versions

TPA uses ansible-core 2.16 by default.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 65

4 Open source TPA

What is Trusted Postgres Architect (TPA)?

TPA is an orchestration tool developed by EnterpriseDB (EDB) that uses Ansible to deploy Postgres clusters according to EDB's recommendations.

TPA embodies the best practices followed by EDB, informed by many years of hard-earned experience with deploying and supporting Postgres. These
recommendations are as applicable to quick testbed setups as to production environments.

Next Steps

Installing TPA from Source
Deploying your first cluster
TPA's full documentation online

TPA Open Source FAQs

Can I use this if I'm not an EDB customer?

Yes, TPA is an open source project under the GPLv3 license. It supports deploying clusters comprised of open source software, or EDB's proprietary
products, or combinations.

Can I report an issue?

Yes, if you're an EDB customer then please contact support. Otherwise please open a GitHub Issue.

Can I contribute?

Sure, we'd love to hear from you but please open an issue before you start coding. We are quite selective with what TPA can/should do so bug fixes are
more likely to get accepted than new features.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 66

https://www.enterprisedb.com/

5 Installing TPA from source

This document explains how to use TPA from a copy of the source code repository.

Note

EDB customers must install TPA from packages in order to receive EDB support for the software.

To run TPA from source, you must install all of the dependencies (e.g., Python 3.12+) that the packages would handle for you, or download the source and
run TPA in a Docker container. (Either way will work fine on Linux and macOS.)

Quickstart

First, you must install the various dependencies Python 3, Python venv, git, openvpn and patch. Installing from EDB repositories would install these
automatically along with the TPA packages.

Before you install TPA, you must install the required packages:

Debian/Ubuntu
sudo apt-get install python3 python3-pip python3-venv git openvpn patch

Redhat, Rocky or AlmaLinux (RHEL7)
sudo yum install python3 python3-pip epel-release git openvpn patch

Redhat, Rocky or AlmaLinux (RHEL8)
sudo yum install python36 python3-pip epel-release git openvpn patch

Clone and setup

With prerequisites installed, you can now clone the repository.

git clone https://github.com/enterprisedb/tpa.git ~/tpa

This creates a tpa directory in your home directory.

If you prefer to checkout with ssh use:

git clone ssh://git@github.com/EnterpriseDB/tpa.git ~/tpa

Add the bin directory, found within in your newly created clone, to your path with:

export PATH=$PATH:$HOME/tpa/bin

Add this line to your .bashrc file (or other profile file for your preferred shell).

You can now create a working tpa environment by running:

tpaexec setup

This will create the Python virtual environment that TPA will use in future. All needed packages are installed in this environment. To test this configured
correctly, run the following:

tpaexec selftest

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 67

tpaexec selftest

You now have tpaexec installed.

Dependencies

Python 3.12+

TPA requires Python 3.12 or later, available on most modern distributions. If you don't have it, you can use pyenv to install any version of Python you like
without affecting the system packages.

If you were not already using pyenv, please remember to add pyenv to your PATH in .bashrc and call eval "$(pyenv init -)" as described in
the pyenv documentation.

Virtual environment options

By default, tpaexec setup will use the builtin Python 3 -m venv to create a venv under $TPA_DIR/tpa-venv , and activate it automatically
whenever tpaexec is invoked.

You can run tpaexec setup --venv /other/location to specify a different location for the new venv.

We strongly suggest sticking to the default venv location. If you use a different location, you must also set the environment variable TPA_VENV to its
location, for example by adding the following line to your .bashrc (or other shell startup scripts):

First, install pyenv and activate it in
~/.bashrc
See
https://github.com/pyenv/pyenv#installation
(e.g., `brew install pyenv` on MacOS
X)

$ pyenv install
3.12.0
Downloading Python-3.12.0.tar.xz...
-> https://www.python.org/ftp/python/3.12.0/Python-3.12.0.tar.xz
Installing Python-3.12.0...
Installed Python-3.12.0 to /home/ams/.pyenv/versions/3.12.0

$ pyenv local
3.12.0
$ pyenv version
3.12.0 (set by /home/ams/pyenv/.python-
version)

$ pyenv which python3
/home/ams/.pyenv/versions/3.12.0/bin/python3
$ python3 --version
3.12.0

export TPA_VENV="/other/location"

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 68

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv#installation

6 A First Cluster Deployment

In this short tutorial, we are going to work through deploying a simple M1 architecture deployment onto a local Docker installation. By the end you will
have four containers, one primary database, two replicas and a backup node, configured and ready for you to explore.

For this example, we will run TPA on an Ubuntu system, but the considerations are similar for most Linux systems.

Installing TPA

If you're an EDB customer, you'll want to follow the EDB Repo instructions which will install the TPA packages straight from EDB's repositories.

If you are an open source user of TPA, there's instructions on how to build from the source which you can download from Github.com.

Follow those guides and then return here.

Installing Docker

As we said, We are going to deploy the example deployment onto Docker and unless you already have Docker installed we'll need to set that up.

On Debian or Ubuntu, install Docker by running:

sudo apt update
sudo apt install docker.io

For other Linux distributions, consult the Docker Engine Install page.

You will want to add your user to the docker group with:

sudo usermod -aG docker <yourusername>
newgrp docker

Warning

Giving a user the ability to speak to the Docker daemon lets them trivially gain root on the Docker host. Only trusted users should have access to
the Docker daemon.

on RHEL 7 instances

To use RHEL 7 instances your host must be configured to run cgroups v1. Refer to documentation for your system to verify and alter cgroups
configuration, or choose another operating system for your containers to follow this tutorial.

Creating a configuration with TPA

The next step in this process is to create a configuration. TPA does most of the work for you through its configure command. All you have to do is
supply command line flags and options to select, in broad terms, what you want to deploy. Here's our tpaexec configure command:

tpaexec configure demo --architecture M1 --platform docker --postgresql 15 --enable-repmgr --no-git

This creates a configuration called demo which has the M1 architecture. It will therefore have a primary, replica and backup node.

The --platform docker tells TPA that this configuration should be created on a local Docker instance; it will provision all the containers and OS

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 69

https://docs.docker.com/engine/install/

The --platform docker tells TPA that this configuration should be created on a local Docker instance; it will provision all the containers and OS
requirements. Other platforms include AWS, which does the same with Amazon Web Services and Bare, which skips to operating system provisioning and
goes straight to installing software on already configured Linux hosts.

With --postgresql 15 , we instruct TPA to use Community Postgres, version 15. There are several options here in terms of selecting software, but
this is the most straightforward default for open-source users.

Adding --enable-repmgr tells TPA to use configure the deployment to use Replication Manager to hand replication and failover.

Finally, --no-git turns off the feature in TPA which allows you to revision control your configuration through git.

Run this command, and apparently, nothing will happen on the command line. But you will find a directory called demo has been created containing
some files including a config.yml file which is a blueprint for our new deployment.

Provisioning the deployment

Now we are ready to create the containers (or virtual machines) on which we will run our new deployment. This can be achieved with the provision
command. Run:

tpaexec provision demo

You will see TPA work through the various operations needed to prepare for deployment of your configuration.

Deploying

Once provisioned, you can move on to deployment. This installs, if needed, operating systems and system packages. It then installs the requested Postgres
architecture and performs all the needed configuration.

tpaexec deploy demo

You will see TPA work through the various operations needed to deploy your configuration.

Testing

You can quickly test your newly deployed configuration using the tpaexec test command which will run pgbench on your new database.

tpaexec test demo

Connecting

To get to a psql prompt, the simplest route is to log into one of the containers (or VMs or host depending on configuration) using docker or SSH. Run

tpaexec ping demo

to ping all the connectable hosts in the deployment: You will get output that looks something like:

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 70

https://www.repmgr.org/

$ tpaexec ping demo
unfair | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
uptake | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
quondam | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
uptight | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

Select one of the nodes which responded with SUCCESS . We shall use uptake for this example.

If you are only planning on using docker, use the command docker exec -it uptake /bin/bash , substituting in the appropriate hostname.

Another option, that works with all types of TPA deployment is to use SSH. To do that, first change current directory to the created configuration
directory.

For example, our configuration is called demo, so we go to that directory. In there, we run ssh -F ssh_config ourhostname to connect.

cd demo
ssh -F ssh_config uptake
Last login: Wed Sep 6 10:08:01 2023 from 172.17.0.1
[root@uptake ~]#

In both cases, you will be logged in as a root user on the container.

We can now change user to the postgres user using sudo -iu postgres . As postgres we can run psql . TPA has already configured that
user with a .pgpass file so there's no need to present a password.

[root@uptake ~]#
postgres@uptake:~ $ psql
psql (15.4)
Type "help" for help.

postgres=#

And we are connected to our database.

You can connect from the host system without SSHing into one of the containers. Obtain the IP address of the host you want to connect to from the
ssh_config file.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 71

$ grep "^ *Host" demo/ssh_config
Host *
Host uptight
 HostName 172.17.0.9
Host unfair
 HostName 172.17.0.4
Host quondam
 HostName 172.17.0.10
Host uptake
 HostName 172.17.0.11

We are going to connect to uptake, so the IP address is 172.17.0.11.

You will also need to retrieve the password for the postgres user too. Run tpaexec show-password demo postgres to get the stored password
from the system.

tpaexec show-password demo postgres
a9LmI1X^uMOpPoEnLuRdL%L$oRQak3om

Assuming you have a Postgresql client installed, you can then run:

psql --host 172.17.0.11 -U postgres
Password for user postgres:

Enter the password you previously retrieved.

psql (14.9 (Ubuntu 14.9-0ubuntu0.22.04.1), server 15.4)
WARNING: psql major version 14, server major version 15.
 Some psql features might not work.
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.

postgres=#

You are now connected from the Docker host to Postgres running in one of the TPA deployed Docker containers.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 72

7 Cluster configuration

The tpaexec configure command generates a YAML cluster configuration file that is required by subsequent stages in the provision/deploy/test
cycle.

Quickstart

This command will create a directory named ~/clusters/speedy and generate a configuration file named config.yml that follows the layout of
the architecture named M1 (single primary, N replicas). It will create a git repository in the new directory and make an initial commit containing the
generated config.yml .

The command also accepts various options (some specific to the selected architecture or platform) to modify the configuration, but the defaults are
sensible and intended to be usable straightaway. You are encouraged to read the generated config.yml and fine-tune the configuration to suit your needs.
(Here's an overview of configuration settings that affect the deployment.)

It's possible to write config.yml entirely by hand, but it's much easier to edit the generated file.

Configuration options

The first argument must be the cluster directory, e.g., speedy or ~/clusters/speedy (the cluster will be named speedy in both cases). We
recommend that you keep all your clusters in a common directory, e.g., ~/clusters in the example above.

The next argument must be --architecture <name> to select an architecture, e.g., M1 or BDR-Always-ON or PGD-X. For a complete list of
architectures, run tpaexec info architectures .

Next, you must specify a flavour and version of Postgres to install.

The arguments above are always mandatory. The rest of the options described here may be safely omitted, as in the example above; the defaults will lead
to a usable result.

Run tpaexec help configure-options for a list of common options.

Architecture-specific options

The architecture you select determines what other options are accepted. Typically, each architecture accepts some unique options as well as the generic
options described below.

For example, with M1 you can use --location-names l1 l2 to create a cluster with nodes in two named locations. Please consult the
documentation for an architecture for a list of options that it accepts (or, in some cases, requires).

[tpa]$ tpaexec configure ~/clusters/speedy --architecture M1 \
 --postgresql 14 \
 --failover-manager
repmgr

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 73

Platform options

Next, you may use --platform <name> to select a platform, e.g., aws or bare.

An architecture may or may not support a particular platform. If not, it will fail to configure the cluster.

The choice of platform affects the interpretation of certain options. For example, if you choose aws, the arguments to --region <region> and --
instance-type <type> must be a valid AWS region name and EC2 instance type respectively. Please refer to the platform documentation for more
details.

If you do not explicitly select a platform, the default is currently aws.

Note: TPA fully supports creating clusters with instances on different platforms, but tpaexec configure cannot currently generate such a
configuration. You must edit config.yml to specify multiple platforms.

Owner

Specify --owner <name> to associate the cluster (by some platform-specific means, e.g., AWS tags) with the name of a person responsible for it. This
is especially important for cloud platforms. By default, the owner is set to the login name of the user running tpaexec provision .

(You may use your initials, or "Firstname Lastname", or anything else that identifies you uniquely.)

Region

Specify --region <region> to select a region.

This option is meaningful only for cloud platforms. The default for AWS is eu-west-1.

Note: TPA fully supports creating clusters that span multiple regions, but tpaexec configure cannot currently generate such a configuration. You
must edit config.yml to specify multiple regions.

Network configuration

Note

These options are not meaningful for the "bare" platform, where TPA will not alter the network configuration of existing servers.

By default, each cluster will be configured with a number of randomly selected /28 subnets from the CIDR range 10.33.0.0/16 , depending on the
selected architecture.

Specify --network 192.168.0.0/16 to assign subnets from a different network. On AWS clusters, this corresponds to the VPC CIDR. See aws
documentation for details.

Specify --subnet-prefix 26 to assign subnets of a different size, /26 instead of /28 in this case.

Note

When the "docker" platform is selected, TPA will always place the entire cluster in a single subnet regardless of the architecture. This subnet is
generated according to the logic described here with the exception that if the subnet-prefix is not specified, TPA will automatically select
a subnet size large enough to accomodate the number of instances in config.yaml .

Specify --no-shuffle-subnets to allocate subnets from the start of the network CIDR range, without randomisation, e.g. 10.33.0.0/28 , then
10.33.0.16/28 and so on.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 74

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/ec2/instance-types/

Specify --exclude-subnets-from <directory> to exclude subnets that are already used in existing cluster config.yml files. You can specify this
argument multiple times for each directory.

Instance type

Specify --instance-type <type> to select an instance type.

This option is meaningful only for cloud platforms. The default for AWS is t3.micro.

Disk space

Specify --root-volume-size 64 to set the size of the root volume in GB. (Depending on the platform, there may be a minimum size required for the
root volume.)

The --postgres-volume-size <size> and --barman-volume-size <size> options are available to set the sizes of the Postgres and
Barman volumes on those architectures and platforms that support separate volumes for Postgres and Barman.

None of these options is meaningful for the "bare" platform, where TPA has no control over volume sizes.

Hostnames

By default, tpaexec configure will randomly select as many hostnames as it needs from a pre-approved list of several dozen names. This should be
enough for most clusters.

Specify --hostnames-from <filename> to select hostnames from a file with one name per line. The file must contain at least as many valid
hostnames as there are instances in your cluster. Each line may contain an optional IP address after the name; if present, this address will be set as the
ip_address for the corresponding instance in config.yml . If two ip addresses are present, the first will be set as public_ip and the second as
private_ip .

Use --hostnames-pattern '…pattern…' to limit the selection to lines matching an egrep pattern.

Use --hostnames-sorted-by="--dictionary-order" to select a sort(1) option other than --random-sort (which is the default).

Use --hostnames-unsorted to not sort hostnames at all. In this case, they will be assigned in the order they are found in the hostnames file. This is
the default when a hostnames file is explicitly specified.

Use --cluster-prefixed-hostnames to make each hostname begin with the name of the cluster. This can be useful to avoid hostname clashes
when running more than one docker cluster on the same host.

Hostnames may contain only letters (a-z), digits (0-9), and '-'. They may be FQDNs, depending on the selected platform. Hostnames should be in
lowercase; any uppercase characters will be converted to lowercase internally, and any references to these hostnames in config.yml (e.g., upstream:
hostname) must use the lowercase version.

Software selection

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 75

Distribution

Specify --distribution <name> to select a distribution.

The selected platform determines which distributions are available, and which one is used by default.

In general, you should be able to use "Debian", "RedHat", "Ubuntu", and "SLES" to select the right images.

This option is not meaningful for the "bare" platform, where TPA has no control over which distribution is installed.

EDB repositories

TPA can enable any EDB software repository that you have access to through a subscription. By default, TPA will install any product repositories that the
architecture requires.

More detailed explanation of how TPA uses EDB repositories is available here and on the page for each architecture.

Specify --edb-repositories repository … to specify the complete list of EDB repositories to install on each instance.

Use this option with care. TPA will configure the named repositories with no attempt to make sure the combination is appropriate.

To use this options, you must export EDB_SUBSCRIPTION_TOKEN=xxx before you run TPA. You can get an EDB token from
enterprisedb.com/repos.

Local repository support

Use --enable-local-repo to create a local package repository from which to ship packages to target instances.

In environments with restricted network access, you can instead use --use-local-repo-only to create a local repository and disable all other
package repositories on target instances, so that packages are installed only from the local repository.

The page about Local repository support has more details.

Software versions

Postgres flavour and version

TPA supports PostgreSQL, EDB Postgres Extended, and EDB Postgres Advanced Server (EPAS) versions 11 through 17.

You must specify both the flavour (or distribution) and major version of Postgres to install, for example:

--postgresql 14 will install PostgreSQL 14

--edb-postgres-extended 15 will install EDB Postgres Extended 15

--edb-postgres-advanced 15 --redwood will install EPAS 15 in "Redwood" mode

--edb-postgres-advanced 15 --no-redwood will install EPAS 15 in non-Redwood mode

If you are installing EPAS, you must specify whether it should operate in --redwood or --no-redwood mode, i.e., whether to enable or disable its
Oracle compatibility features.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 76

Installing EDB Postgres Extended or Postgres Advanced Server requires a valid EDB repository subscription.

Package versions

By default, we always install the latest version of every package. This is usually the desired behaviour, but in some testing scenarios, it may be necessary
to select specific package versions using any of the following options:

1. --postgres-package-version 10.4-2.pgdg90+1
2. --repmgr-package-version 4.0.5-1.pgdg90+1
3. --barman-package-version 2.4-1.pgdg90+1
4. --pglogical-package-version '2.2.0*'
5. --bdr-package-version '3.0.2*'
6. --pgbouncer-package-version '1.8*'
7. --beacon-agent-package-version 1.56.2-1
8. --etcd-package-version 9.8.0-1.el8
9. --patroni-package-version 4.0.0-1PGDG.rhel8

10. --pem-server-package-version 9.7.0-1.el9
11. --pem-agent-package-version 9.7.0-1.el9
12. --pg-backup-api-package-version 2.0.0-1.el8
13. --pgd-proxy-package-version 5.0.0-1
14. --pgdcli-package-version 5.6.1

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

You may also specify --extra-packages p1 p2 … or --extra-postgres-packages p1 p2 … to install additional packages. The former
lists packages to install along with system packages, while the latter lists packages to install later along with postgres packages. (If you mention packages
that depend on Postgres in the former list, the installation will fail because Postgres will not yet be installed.) The arguments are passed on to the package
manager for installation without any modifications.

The --extra-optional-packages p1 p2 … option behaves like --extra-packages , but it is not an error if the named packages cannot be
installed.

Known issue with wildcard use

Please note that the use of wildcards in *_package_version when added permanently to config.yml , can result in unexpected updates to
installed software during tpaexec deploy on nodes with RHEL 8 and above (or derivative OSs which use dnf such as Rocky Linux). When deploy runs
on an existing cluster that already has packages installed ansible may be unable to match the full package version. For example, if the value for
bdr_package_version was set to 3.6* then ansible would not be able to match this to an installed version of PGD, it would assume no package is

installed, and it would attempt to install the latest version available of the package with the same name in the configured repository, e.g. 3.7.

We are aware of this limitation as an ansible dnf module bug and hope to address this in a future release of TPA.

Building and installing from source

If you specify --install-from-source postgres , Postgres will be built and installed from a git repository instead of installed from packages. By
default, this will build the appropriate REL_nnn_STABLE branch.

You may use --install-from-source postgres bdr5 to build and install both components from source, or just use --install-from-
source bdr5 to use packages for Postgres, but build and install PGD v5 from source. By default, this will build the main branch of PGD.

To build a different branch, append :branchname to the corresponding argument. For example --install-from-source
2ndqpostgres:dev/xxx , or pglogical:bug/nnnn .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 77

You may not be able to install packages that depend on a package that you chose to replace with a source installation instead. For example, PGD v3
packages depend on pglogical v3 packages, so you can't install pglogical from its source repository and PGD from packages. Likewise, you can't install
Postgres from source and pglogical from packages.

Overrides

You may optionally specify --overrides-from a.yml … to load one or more YAML files with settings to merge into the generated config.yml.

Any file specified here is first expanded as a Jinja2 template, and the result is loaded as a YAML data structure, and merged recursively into the arguments
used to generate config.yml (comprising architecture and platform defaults and arguments from the command-line). This process is repeated for each
additional override file specified; this means that settings defined by one file will be visible to any subsequent files.

For example, your override file might contain:

cluster_tags:
 some_tag: "{{ lookup('env', 'SOME_ENV_VAR') }}"

cluster_vars:
 synchronous_commit: remote_write
 postgres_conf_settings:
 effective_cache_size: 4GB

These settings will augment cluster_tags and cluster_vars that would otherwise be in config.yml. Settings are merged recursively, so
cluster_tags will end up containing both the default Owner tag as well as some_tag . Similarly, the effective_cache_size setting will

override that variable, leaving other postgres_conf_settings (if any) unaffected. In other words, you can set or override specific subkeys in
config.yml, but you can't empty or replace cluster_tags or any other hash altogether.

The merging only applies to hash structures, so you cannot use this mechanism to change the list of instances within config.yml. It is most useful to
augment cluster_vars and instance_defaults with common settings for your environment.

That said, the mechanism does not enforce any restrictions, so please exercise due caution. It is a good idea to generate two configurations with and
without the overrides and diff the two config.yml files to make sure you understand the effect of all the overrides.

Ansible Tower

Use the --use-ansible-tower and --tower-git-repository options to create a cluster adapted for deployment with Ansible Tower. See
Ansible Tower for details.

Beacon agent

Use the --enable-beacon-agent and --beacon-agent-project-id options to install the beacon agent, which enables you to view your
cluster in the EDB Postgres AI Console. See Configuring the beacon agent for details.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 78

Git repository

By default, a git repository is created with an initial branch named after the cluster, and a single commit is made, with the configure options you used in
the commit message. If you don't have git in your $PATH , tpaexec will not raise an error but the repository will not be created. To suppress creation of
the git repository, use the --no-git option. (Note that in an Ansible Tower cluster, a git repository is required and will be created later by tpaexec
provision if it does not already exist.)

Keyring backend for vault password

TPA generates a cluster specific ansible vault password. This password is used to encrypt other sensitive variables generated for the cluster, postgres
user password, barman user password and so on.

Keyring backend system will leverage the best keyring backend on your system from the list of supported backend by python keyring module including
gnome-keyring and secret-tool.

Default is to store the vault password using system keyring for new cluster. removing keyring_backend: system in config.yml file before any
provision will revert previous default to store vault password in plaintext file.

Using keyring_backend: system also generates a vault_name entry in config.yml used to store the vault password unique storage name. TPA
generate an UUID by default but there is no naming scheme requirements.

Note: When using keyring_backend: system and the same base config.yml file for multiple clusters with same cluster_name , by copying the
config file to a different location, ensure the value pair (vault_name , cluster_name) is unique for each cluster copy.

Note: When using keyring_backend: system and moving an already provisioned cluster folder to a different tpa host, ensure that you export the
associated vault password on the new machine's system keyring. vault password can be displayed via tpaexec show-vault <cluster_dir> .

Security standards compliance

Use the --compliance stig or --compliance cis options to generate a cluster with configuration suitable for complying with the STIG or CIS
standard. See Compliance for details. Note that these options do not guarantee that the cluster fulfills the relevant standard; they only cause TPA to
generate a configuration designed to comply with those aspects of the standard that can be controlled by TPA.

Examples

Let's see what happens when we run the following command:

There is no output, so there were no errors. The cluster directory has been created and populated.

[tpa]$ tpaexec configure ~/clusters/speedy --architecture M1 \
 --distribution Debian
\
 --platform aws --region us-east-1 --network 10.33.0.0/16
\
 --instance-type t2.medium --root-volume-size 32 \
 --postgres-volume-size 64 --barman-volume-size 128
\
 --postgresql 14 \
 --failover-manager
repmgr
[tpa]$

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 79

The cluster configuration is in config.yml, and its neighbours are links to architecture-specific support files that you need not interact with directly. Here's
what the configuration looks like:

$ ls -lh ~/clusters/speedy/
total 8.0K
drwxrwxr-x 2 haroon haroon 4.0K Aug 17 02:33
commands
-rw-rw-r-- 1 haroon haroon 1.5K Aug 17 02:33
config.yml
lrwxrwxrwx 1 haroon haroon 53 Aug 17 02:33 deploy.yml ->
/home/haroon/tpa/architectures/M1/deploy.yml

architecture: M1
cluster_name:
speedy
cluster_tags: {}

keyring_backend:
system
vault_name: cfae3da3-ec00-46cd-ab05-e153f1c788db

cluster_rules:
- cidr_ip: 0.0.0.0/0
 from_port: 22
 proto:
tcp
 to_port: 22
- cidr_ip: 10.33.120.80/28
 from_port: 0
 proto:
tcp
 to_port: 65535
ec2_ami:
 Name: debian-11-amd64-20240104-1616
 Owner: '136693071363'
ec2_instance_reachability:
public
ec2_vpc:
 us-east-1:
 Name: Test
 cidr: 10.33.0.0/16

cluster_vars:
 edb_repositories: []
 failover_manager:
repmgr
 postgres_flavour: postgresql
 postgres_version: '14'
 preferred_python_version: python3

locations:
- Name: main
 az: us-east-
1a
 region: us-east-
1
 subnet: 10.33.120.80/28

instance_defaults:
 default_volumes:
 - device_name: root
 encrypted: true

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 80

The next step is to run tpaexec provision or learn more about how to customise the configuration of the cluster as a whole or how to configure an
individual instance.

 volume_size: 32
 volume_type:
gp2
 - device_name:
/dev/sdf
 encrypted: true
 vars:
 volume_for: postgres_data
 volume_size: 64
 volume_type:
gp2
 platform:
aws
 type: t2.medium
 vars:
 ansible_user: admin

instances:
- Name:
uproar
 backup: kinsman
 location: main
 node: 1
 role:
 - primary
- Name: unravel
 location: main
 node: 2
 role:
 - replica
 upstream:
uproar
- Name: kinsman
 location: main
 node: 3
 role:
 -
barman
 - log-server
 - witness
 upstream:
uproar
 volumes:
 - device_name:
/dev/sdf
 encrypted: true
 vars:
 volume_for:
barman_data
 volume_size: 128
 volume_type:
gp2

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 81

8 tpaexec provision

Provision creates instances and other resources required by the cluster.

The exact details of this process depend both on the architecture (e.g. M1) and platform (e.g. AWS) that you selected while configuring the cluster.

At the end of the provisioning stage, you will have the required number of instances with the basic operating system installed, which TPA can access via
ssh (with sudo to root).

Prerequisites

Before you can provision a cluster, you must generate the cluster configuration with tpaexec configure (and edit config.yml to fine-tune the
configuration if needed).

You may need additional platform-dependent steps. For example, you need to obtain an AWS API access keypair to provision EC2 instances, or set up LXD
or Docker to provision containers. Consult the platform documentation for details.

Quickstart

This command will produce lots of output (append -v , -vv , etc. to the command if you want even more verbose output). The output is also logged to
ansible.log in the cluster directory. This can be overriden by setting the environment variable ANSIBLE_LOG_PATH to the path and name of the

desired logfile.

If it completes without error, you may proceed to run tpaexec deploy to install and configure software.

[tpa]$ tpaexec provision ~/clusters/speedy

PLAY [Provision cluster]
**
...

TASK [Set up EC2 instances]

changed: [localhost] => (item=us-east-
1:uproar)
changed: [localhost] => (item=us-east-
1:unravel)
changed: [localhost] => (item=us-east-
1:kinsman)
...

TASK [Generate ssh_config file for the cluster]

changed:
[localhost]

PLAY RECAP **
localhost : ok=163 changed=35 unreachable=0 failed=0 skipped=44 rescued=0
ignored=2

real 4m42.726s
user 0m39.101s
sys 0m15.687s

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 82

Options

When provisioning cloud instances, it is especially important to make sure instances are directly traceable to a human responsible for them. By default,
TPA will tag EC2 instances as being owned by the login name of the user running tpaexec provision .

Specify --owner <name> to change the name (e.g., if your username happens to be something generic, like postgres or ec2-user). You may use
initials, or "Firstname Lastname", or anything else to uniquely identify a person.

Any other options you specify are passed on to Ansible.

Accessing the instances

After provisioning completes, you should be able to SSH to the instances (after a brief delay to allow the instances to boot up and install their SSH host
keys). As shown in the output above, tpaexec will generate an ssh_config file for you to use.

To login to a host, use the command ssh -F ssh_config followed by the hostname. For example ssh -F ssh_config uproar .

You can run tpaexec deploy immediately after provisioning. It will wait as long as required for the instances to come up. You do not need to wait for
the instances to come up, or ssh in to them before you start deployment.

Generated files

During the provisioning process, a number of new files will be created in the cluster directory:

[tpa]$ cd ~/clusters/speedy
[tpa]$ cat
ssh_config
Host *
 Port 22
 IdentitiesOnly
yes
 IdentityFile "id_speedy"
 UserKnownHostsFile known_hosts
tpa_known_hosts
 ServerAliveInterval 60

Host
uproar
 User admin
 HostName 3.88.255.205
Host unravel
 User admin
 HostName 54.80.99.142
Host kinsman
 User admin
 HostName
54.165.229.179

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 83

We've already studied the sshconfig file, which refers to the `id* files (an SSH keypair generated for the cluster)
and tpa_known_hosts (the signatures of the hostkeys/` installed on the instances).

The vars.json file may be used by tpaexec provision on subsequent invocations with --cached .

The inventory/ directory contains static and dynamic inventory files as well as group and host variable definitions from config.yml.

[tpa]$ ls ~/clusters/speedy
total
240
-rw-r--r-- 1 ams ams 193098 Aug 4 17:59
ansible.log
drwxr-xr-x 2 ams ams 4096 Aug 4 17:38
commands
-rw-r--r-- 1 ams ams 1442 Aug 4 17:54
config.yml
lrwxrwxrwx 1 ams ams 51 Aug 4 17:38 deploy.yml
->
 /opt/EDB/TPA/architectures/M1/deploy.yml
drwxr-xr-x 2 ams ams 4096 Aug 4 17:38
hostkeys
-rw------- 1 ams ams 1675 Aug 4 17:38
id_speedy
-rw------- 1 ams ams 1438 Aug 4 17:38
id_speedy.ppk
-rw-r--r-- 1 ams ams 393 Aug 4 17:38
id_speedy.pub
drwxr-xr-x 4 ams ams 4096 Aug 4 17:50
inventory
-rw-r--r-- 1 ams ams 2928 Aug 4 17:50
tpa_known_hosts
-rw-r--r-- 1 ams ams 410 Aug 4 17:50
ssh_config
-rw-r--r-- 1 ams ams 3395 Aug 4 17:59
vars.json
drwxr-xr-x 2 ams ams 4096 Aug 4 17:38
vault

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 84

If you now change a variable in config.yml and rerun provision, these files will be updated. If you don't change the configuration, it won't do anything. If
you add a new instance in config.yml and rerun, it will bring up the new instance without affecting the existing ones.

[tpa]$ cat inventory/00-
speedy
[tag_Cluster_speedy]
uproar ansible_host=3.88.255.205 node=1
platform=aws
unravel ansible_host=54.80.99.142 node=2
platform=aws
kinsman ansible_host=54.165.229.179 node=3
platform=aws

[tpa]$ cat inventory/group_vars/tag_Cluster_speedy/01-
speedy.yml
cluster_name:
speedy
cluster_tag: tag_Cluster_speedy
edb_repositories: []
failover_manager:
repmgr
keyring_backend:
system
postgres_flavour: postgresql
postgres_version: '14'
preferred_python_version: python3
ssh_key_file: id_speedy
tpa_version: v23.33-24-g4c0909d1

[tpa]$ cat inventory/host_vars/kinsman/01-
instance_vars.yml
ansible_user: admin
location: main
region: us-east-
1
role:
-
barman
- log-server
- witness
upstream:
uproar
volumes:
- device: /dev/xvda
- device:
/dev/sdf
 volume_for:
barman_data

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 85

9 tpaexec deploy

Deployment is the process of installing and configuring Postgres and other software on the cluster's servers. This includes setting up replication, backups,
and so on.

At the end of the deployment stage, Postgres will be up and running along with other components like repmgr, Barman, pgbouncer, etc. (depending on
the architecture selected).

Prerequisites

Before you can run tpaexec deploy , you must have already run tpaexec configure to generate the cluster configuration and then provisioned
the servers with tpaexec provision .

Before deployment, you must export EDB_SUBSCRIPTION_TOKEN=xxx if you are using any EDB repositories. If you forget to do this, an error
message will soon remind you.

Quickstart

This command produces a great deal of output and may take a long time (depending primarily on the latency between the host running tpaexec and the
hosts in the cluster, as well as how long it takes the instances to download the packages they need to install). We recommend that you use at least one -
v during deployment. The output is also logged to ansible.log in the cluster directory.

The exact number of hosts, tasks, and changed tasks may of course vary.

The deploy command takes no options itself—any options you provide after the cluster name are passed on unmodified to Ansible (e.g., -v).

[tpa]$ tpaexec deploy ~/clusters/speedy -
v
Using /opt/EDB/TPA/ansible/ansible.cfg as config
file

PLAY [Basic initialisation and fact discovery]

...

PLAY [Set up TPA cluster nodes]
**
...

PLAY RECAP ***
zealot : ok=281 changed=116 unreachable=0 failed=0
keeper : ok=284 changed=96 unreachable=0 failed=0
quaver : ok=260 changed=89 unreachable=0 failed=0
quavery : ok=260 changed=88 unreachable=0 failed=0
quirk : ok=262 changed=100 unreachable=0 failed=0

real
7m1.907s
user
3m2.492s
sys
1m5.318s

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 86

Those who are familiar with Ansible may be concerned by the occasional red "failed" task output scrolling by. Rest assured that if the process does not
stop soon afterwards, the error is of no consequence, and the code will recover from it automatically.

When the deployment is complete, you can run tpaexec test to verify the installation.

Selective deployment

You can limit the deployment to a subset of your hosts by setting deploy_hosts to a comma-separated list of instance names:

This will run the deployment on the given instances, though it will also initially execute some tasks on other hosts to collect information about the state of
the cluster.

(Setting deploy_hosts is the recommended alternative to using Ansible's --limit option, which TPA does not support.)

deploy.yml

The deployment process is architecture-specific. Here's an overview of the various configuration settings that affect the deployment. If you are familiar
with Ansible playbooks, you can follow along as tpaexec applies various roles to the cluster's instances.

Unlike config.yml, deploy.yml is not designed to be edited (and is usually a link into the architectures directory). Even if you want to extend the
deployment process to run your own Ansible tasks, you should do so by creating hooks. This protects you from future implementation changes within a
particular architecture.

[tpa]$ tpaexec deploy ~/clusters/speedy -v -e
deploy_hosts=keeper,quaver

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 87

10 tpaexec test

Now we run architecture-specific tests against a deployed cluster to verify the installation. At the end of this stage, we have a fully-functioning cluster.

You must have already run tpaexec configure , tpaexec provision , and tpaexec deploy successfully before you can run tpaexec
test .

Quickstart

Output is once again logged to ansible.log in the cluster directory.

If this command succeeds, your cluster works.

Congratulations.

[tpa]$ tpaexec test ~/clusters/speedy -v

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 88

11 PGD-S

Note

This architecture is for Postgres Distributed 6 only. If you require PGD 5 please use PGD-Always-ON.

EDB Postgres Distributed 6 in a PGD Essential (PGD-S) configuration suitable for use in test and production.

This architecture requires an EDB subscription. All software is sourced from EDB Repos 2.0.

Cluster configuration

Overview of configuration options

An example invocation of tpaexec configure for this architecture is shown below.

You can list all available options using the help command.

The table below describes the mandatory options for PGD-S and additional important options. More detail on the options is provided in the following
section.

Mandatory Options

Options Description

--architecture (-a) Must be set to PGD-S

Postgres flavour and version (e.g. --postgresql
15)

A valid flavour and version specifier.

Additional Options

Options Description Behaviour if omitted

--platform One of aws , docker , bare . Defaults to aws .

--bdr-database The name of the database to be used for replication. Defaults to bdrdb .

tpaexec configure ~/clusters/pgd-s \
 --architecture PGD-S
 --edb-postgres-extended 15 \
 --platform aws --instance-type t3.micro
\
 --distribution Debian
\

tpaexec configure --architecture PGD-S --help

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 89

--layout standard or near-far Defaults to standard

--add-subscriber-
only-nodes

The number of subscriber-only nodes to add, up to 10. Defaults to 0

--read-write-port The port for Connection Manager to listen on for read-
write connections.

Left empty in config.yml, allowing default of the
postgres port + 1000

--read-only-port The port for Connection Manager to listen on for read-
only connections.

Left empty in config.yml, allowing default of the read-
write port + 1

--http-port The port for Connection Manager to listen on for http api
connections.

Left empty in config.yml, allowing default of the read-
write port + 2

--use https Enable https for Connection Manager's http api https is not enabled

Options Description Behaviour if omitted

More detail about PGD-S configuration

A PGD-S cluster has three data nodes. In the standard layout the nodes are all in the same location; in the near-far layout two nodes are in the
primary location and the other is in a secondary location. See the PGD documentation for more information about the two layouts.

The cluster also contains one barman node and up to 10 subscriber-only nodes, controlled by the --add-subscriber-only-nodes parameter.
These are always in the primary location.

You may optionally specify --bdr-database dbname to set the name of the database with BDR enabled (default: bdrdb).

You may also specify any of the options described by tpaexec help configure-options .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 90

https://www.enterprisedb.com/docs/pgd/latest/essential-how-to/

12 PGD-X

Note

This architecture is for Postgres Distributed 6 only. If you require PGD 5 please use PGD-Always-ON.

EDB Postgres Distributed 6 in a PGD Expanded (PGD-X) configuration suitable for use in test and production.

This architecture requires an EDB subscription. All software is sourced from EDB Repos 2.0.

Cluster configuration

Overview of configuration options

An example invocation of tpaexec configure for this architecture is shown below.

tpaexec configure ~/clusters/pgd-x \
 --architecture PGD-X \
 --edb-postgres-extended 15 \
 --platform aws --instance-type t3.micro \
 --distribution Debian \
 --pgd-routing global \
 --location-names dc1 dc2 dc3 \
 --witness-only-location dc3 \
 --data-nodes-per-location 2

You can list all available options using the help command.

tpaexec configure --architecture PGD-X --help

The table below describes the mandatory options for PGD-X and additional important options. More detail on the options is provided in the following
section.

Mandatory Options

Options Description

--architecture (-a) Must be set to PGD-X

Postgres flavour and version (e.g. --postgresql
15)

A valid flavour and version specifier.

--pgd-routing Must be either global or local .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 91

Additional Options

Options Description Behaviour if omitted

--platform One of aws , docker , bare . Defaults to aws .

--location-names A space-separated list of location names. The number of locations is equal to
the number of names supplied.

TPA will configure a single location with
three data nodes.

--witness-only-
location

A location name, must be a member of location-names . No witness-only location is added.

--data-nodes-per-
location

The number of data nodes in each location, must be at least 2. Defaults to 3.

--enable-camo Sets two data nodes in each location as CAMO partners. CAMO will not be enabled.

--bdr-database The name of the database to be used for replication. Defaults to bdrdb .

--enable-pgd-
probes

Enable http(s) api endpoints for pgd-proxy such as health/is-ready to
allow probing proxy's health.

Disabled by default.

--proxy-listen-
port

The port on which proxy nodes will route traffic to the write leader. Defaults to 6432

--proxy-read-
only-port

The port on which proxy nodes will route read-only traffic to shadow nodes. Defaults to 6433

More detail about PGD-X configuration

A PGD-X cluster comprises a number of locations, preferably odd, each with the same number of data nodes, again preferably odd. If you do not specify
any --location-names , the default is to use a single location with three data nodes.

Location names for the cluster are specified as --location-names dc1 dc2 … . A location represents an independent data center that provides a
level of redundancy, in whatever way this definition makes sense to your use case. For example, AWS regions, your own data centers, or any other
designation to identify where your servers are hosted.

for AWS users

If you are using TPA to provision an AWS cluster, the locations will be mapped to separate availability zones within the --region you specify.
You may specify multiple --regions , but TPA does not currently set up VPC peering to allow instances in different regions to communicate
with each other. For a multi-region cluster, you will need to set up VPC peering yourself.

Use --data-nodes-per-location N to specify the number of data nodes in each location. The minimum number is 2, the default is 3.

If you specify an even number of data nodes per location, TPA will add an extra witness node to each location automatically. This retains the ability to
establish reliable consensus while allowing cost savings (a witness has minimal hardware requirements compared to the data nodes).

A cluster with only two locations would entirely lose the ability to establish global consensus if one of the locations were to fail. We recommend adding a
third witness-only location (which contains no data nodes, only a witness node, again used to reliably establish consensus). Use --witness-only-
location loc to designate one of your locations as a witness.

Depending on your use-case, you must specify --pgd-routing local or global to configure how Connection Manager will route connections to
a write leader. Local routing will make every Connection Manager route to a write leader within its own location (suitable for geo-sharding applications).
Global routing will make every Connection Manager route to a single write leader, elected amongst all available data nodes across all locations.

You may optionally specify --bdr-database dbname to set the name of the database with BDR enabled (default: bdrdb).

You may optionally specify --enable-camo to set two data nodes in each region as CAMO partners.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 92

You may optionally specify --enable-camo to set two data nodes in each region as CAMO partners.

You may optionally specify --enable-pgd-probes [{http, https}] to enable http(s) api endpoints that will allow to easily probe proxy's
health.

You may also specify any of the options described by tpaexec help configure-options .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 93

13 PGD-Always-ON

Note

This architecture is for Postgres Distributed 5 only. If you require PGD 4 or 3.7 please use BDR-Always-ON.

EDB Postgres Distributed 5 in an Always-ON configuration, suitable for use in test and production.

This architecture requires an EDB subscription. All software will be sourced from EDB Repos 2.0.

Cluster configuration

Overview of configuration options

An example invocation of tpaexec configure for this architecture is shown below.

tpaexec configure ~/clusters/pgd-ao \
 --architecture PGD-Always-ON \
 --edb-postgres-extended 15 \
 --platform aws --instance-type t3.micro \
 --distribution Debian \
 --pgd-proxy-routing global \
 --location-names dc1 dc2 dc3 \
 --witness-only-location dc3 \
 --data-nodes-per-location 2

You can list all available options using the help command.

tpaexec configure --architecture PGD-Always-ON --help

The table below describes the mandatory options for PGD-Always-ON and additional important options. More detail on the options is provided in
the following section.

Mandatory Options

Options Description

--architecture (-a) Must be set to PGD-Always-ON

Postgres flavour and version (e.g. --postgresql
15)

A valid flavour and version specifier.

--pgd-proxy-routing Must be either global or local .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 94

Additional Options

Options Description Behaviour if omitted

--platform One of aws , docker , bare . Defaults to aws .

--location-names A space-separated list of location names. The number of locations is
equal to the number of names supplied.

TPA will configure a single location
with three data nodes.

--witness-only-
location

A location name, must be a member of location-names . No witness-only location is added.

--data-nodes-per-
location

The number of data nodes in each location, must be at least 2. Defaults to 3.

--add-proxy-nodes-
per-location

The number of proxy nodes in each location. PGD-proxy will be installed on each
data node.

--enable-camo Sets two data nodes in each location as CAMO partners. CAMO will not be enabled.

--bdr-database The name of the database to be used for replication. Defaults to bdrdb .

--enable-pgd-
probes

Enable http(s) api endpoints for pgd-proxy such as health/is-
ready to allow probing proxy's health.

Disabled by default.

--proxy-listen-
port

The port on which proxy nodes will route traffic to the write leader. Defaults to 6432

--proxy-read-only-
port

The port on which proxy nodes will route read-only traffic to shadow
nodes.

Defaults to 6433

More detail about PGD-Always-ON configuration

A PGD-Always-ON cluster comprises a number of locations, preferably odd, each with the same number of data nodes, again preferably odd. If
you do not specify any --location-names , the default is to use a single location with three data nodes.

Location names for the cluster are specified as --location-names dc1 dc2 … . A location represents an independent data centre that
provides a level of redundancy, in whatever way this definition makes sense to your use case. For example, AWS regions, your own data centres,
or any other designation to identify where your servers are hosted.

for AWS users

If you are using TPA to provision an AWS cluster, the locations will be mapped to separate availability zones within the --region you specify.
You may specify multiple --regions , but TPA does not currently set up VPC peering to allow instances in different regions to communicate
with each other. For a multi-region cluster, you will need to set up VPC peering yourself.

Use --data-nodes-per-location N to specify the number of data nodes in each location. The minimum number is 2, the default is 3.

If you specify an even number of data nodes per location, TPA will add an extra witness node to each location automatically. This retains the ability to
establish reliable consensus while allowing cost savings (a witness has minimal hardware requirements compared to the data nodes).

A cluster with only two locations would entirely lose the ability to establish global consensus if one of the locations were to fail. We recommend adding a
third witness-only location (which contains no data nodes, only a witness node, again used to reliably establish consensus). Use --witness-only-
location loc to designate one of your locations as a witness.

By default, every data node (in every location) will also run PGD-Proxy for connection routing. To create separate PGD-Proxy instances instead, use --
add-proxy-nodes-per-location 3 (or however many proxies you want to add).

Depending on your use-case, you must specify --pgd-proxy-routing local or global to configure how PGD-Proxy will route connections to a

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 95

Depending on your use-case, you must specify --pgd-proxy-routing local or global to configure how PGD-Proxy will route connections to a
write leader. Local routing will make every PGD-Proxy route to a write leader within its own location (suitable for geo-sharding applications). Global
routing will make every proxy route to a single write leader, elected amongst all available data nodes across all locations.

You may optionally specify --bdr-database dbname to set the name of the database with BDR enabled (default: bdrdb).

You may optionally specify --enable-camo to set two data nodes in each region as CAMO partners.

You may optionally specify --enable-pgd-probes [{http, https}] to enable http(s) api endpoints that will allow to easily probe proxy's
health.

You may also specify any of the options described by tpaexec help configure-options .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 96

14 PGD Lightweight

Note

This architecture is for Postgres Distributed 5 only. If you require PGD 4 or 3.7 please use BDR-Always-ON.

EDB Postgres Distributed 5 in a Lightweight configuration, suitable for use in test and production.

This architecture requires an EDB subscription. All software will be sourced from EDB Repos 2.0.

Cluster configuration

Overview of configuration options

An example invocation of tpaexec configure for this architecture is shown below.

You can list all available options using the help command.

The table below describes the mandatory options for PGD-Always-ON and additional important options. More detail on the options is provided in the
following section.

Mandatory Options

Options Description

--architecture (-a) Must be set to Lightweight

Postgres flavour and version (e.g. --postgresql
15)

A valid flavour and version specifier.

Additional Options

Options Description Behaviour if omitted

--platform One of aws , docker , bare . Defaults to aws .

 tpaexec configure ~/clusters/pgd-lw \
 --architecture Lightweight
\
 --edb-postgres-extended 15 \
 --platform aws --instance-type t3.micro
\
 --distribution Debian
\
 --location-names main dr \

tpaexec configure --architecture Lightweight --
help

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 97

--location-names A space-separated list of location names. The number of locations is equal
to the number of names supplied.

TPA will configure a single location
with three data nodes.

--add-proxy-nodes-
per-location

The number of proxy nodes in each location. PGD-proxy will be installed on each
data node.

--bdr-database The name of the database to be used for replication. Defaults to bdrdb .

--enable-pgd-probes Enable http(s) api endpoints for pgd-proxy such as health/is-ready
to allow probing proxy's health.

Disabled by default.

--proxy-listen-port The port on which proxy nodes will route traffic to the write leader. Defaults to 6432

--proxy-read-only-
port

The port on which proxy nodes will route read-only traffic to shadow
nodes.

Defaults to 6433

Options Description Behaviour if omitted

More detail about Lightweight configuration

A PGD Lightweight cluster comprises 2 locations, with a primary active location containing 2 nodes and a disaster recovery (dr) location with a single
node.

Location names for the cluster are specified as --location-names primary dr . A location represents an independent data centre that provides a
level of redundancy, in whatever way this definition makes sense to your use case. For example, AWS regions, your own data centres, or any other
designation to identify where your servers are hosted.

for AWS users

If you are using TPA to provision an AWS cluster, the locations will be mapped to separate availability zones within the --region you specify.
You may specify multiple --regions , but TPA does not currently set up VPC peering to allow instances in different regions to communicate
with each other. For a multi-region cluster, you will need to set up VPC peering yourself.

By default, every data node (in every location) will also run PGD-Proxy for connection routing. To create separate PGD-Proxy instances instead, use --
add-proxy-nodes-per-location 3 (or however many proxies you want to add).

Global routing will make every proxy route to a single write leader, elected amongst all available data nodes across all locations.

You may optionally specify --bdr-database dbname to set the name of the database with BDR enabled (default: bdrdb).

You may optionally specify --enable-pgd-probes [{http, https}] to enable http(s) api endpoints that will allow to easily probe proxy's
health.

You may also specify any of the options described by tpaexec help configure-options .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 98

15 BDR-Always-ON

EDB Postgres Distributed 3.7 or 4 in an Always-ON configuration, suitable for use in test and production.

This architecture requires an EDB subscription. All software will be sourced from EDB Repos 2.0.

The BDR-Always-ON architecture has four variants, which can be selected with the --layout configure option:

1. bronze: 2×bdr+primary, bdr+witness, barman, 2×harp-proxy

2. silver: bronze, with bdr+witness promoted to bdr+primary, and barman moved to separate location

3. gold: two symmetric locations with 2×bdr+primary, 2×harp-proxy, and barman each; plus a bdr+witness in a third location

4. platinum: gold, but with one bdr+readonly (logical standby) added to each of the main locations

You can check EDB's Postgres Distributed Always On Architectures whitepaper for the detailed layout diagrams.

This architecture is meant for use with PGD versions 3.7 and 4.

Cluster configuration

Overview of configuration options

An example invocation of tpaexec configure for this architecture is shown below.

tpaexec configure ~/clusters/bdr \
 --architecture BDR-Always-ON \
 --platform aws --region eu-west-1 --instance-type t3.micro \
 --distribution Debian \
 --edb-postgres-advanced 14 --redwood
 --layout gold \
 --harp-consensus-protocol bdr

You can list all available options using the help command.

tpaexec configure --architecture BDR-Always-ON --help

The tables below describe the mandatory options for BDR-Always-ON and additional important options. More detail on the options is provided in the
following section.

Mandatory Options

Option Description

--architecture (-a) Must be set to BDR-Always-ON .

Postgres flavour and version (e.g. --postgresql
14)

A valid flavour and version specifier.

--layout One of bronze , silver , gold , platinum .

--harp-consensus-protocol One of bdr , etcd .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 99

https://www.enterprisedb.com/promote/bdr-always-on-architectures

Additional Options

Option Description Behaviour if omitted

--platform One of aws , docker , bare . Defaults to aws .

--enable-camo Sets two data nodes in each location as CAMO partners. CAMO will not be
enabled.

--bdr-database The name of the database to be used for replication. Defaults to bdrdb .

--enable-harp-
probes

Enable http(s) api endpoints for harp such as health/is-ready to allow probing
harp's health.

Disabled by default.

More detail about BDR-Always-ON configuration

You must specify --layout layoutname to set one of the supported BDR use-case variations. The permitted arguments are bronze, silver, gold, and
platinum. The bronze, gold and platinum layouts have a PGD witness node to ensure odd number of nodes for Raft consensus majority. Witness nodes do
not participate in the data replication.

You must specify --harp-consensus-protocol protocolname . The supported protocols are bdr and etcd; see Configuring HARP for more
details.

You may optionally specify --bdr-database dbname to set the name of the database with PGD enabled (default: bdrdb).

You may optionally specify --enable-camo to set the pair of PGD primary instances in each region to be each other's CAMO partners.

You may optionally specify --enable-harp-probes [{http, https}] to enable http(s) api endpoints that will allow to easily probe harp's
health.

Please note we enable HARP2 by default in BDR-Always-ON architecture.

You may also specify any of the options described by tpaexec help configure-options .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 100

16 M1

A Postgres cluster with a single primary node and physical replication to a number of standby nodes including backup and failover management.

This architecture is suitable for production and is also suited to testing, demonstrating and learning due to its simplicity and ability to be configured with
no proprietary components.

If you select subscription-only EDB software with this architecture it will be sourced from EDB Repos 2.0 and you will need to provide a token.

Failover management

The M1 architecture always includes a failover manager. Supported options are repmgr, EDB Failover Manager (EFM) and Patroni. In all cases, the failover
manager will be configured by default to ensure that a replica will be promoted to take the place of the primary should the primary become unavailable.

Application failover

The M1 architecture does not generally provide an automatic facility to reroute application traffic to the primary. There are several ways you can add this
capability to your cluster.

In TPA:

If you choose repmgr as the failover manager and enable PgBouncer, you can include the repmgr_redirect_pgbouncer: true hash under
cluster_vars in config.yml . This causes repmgr to automatically reconfigure PgBouncer to route traffic to the new primary on failover.

If you choose Patroni as the failover manager and enable PgBouncer, Patroni will automatically reconfigure PgBouncer to route traffic to the new
primary on failover.

If you choose EFM as the failover manager, you can use the efm_conf_settings hash under cluster_vars in config.yml to
configure EFM to use a virtual IP address (VIP). This is an additional IP address which will always route to the primary node.

Place an appropriate proxy or load balancer between the cluster and you application and use a TPA hook to configure your selected failover
manager to update it with the route to the new primary on failover.

Handle failover at the application itself, for example by using multi-host connection strings.

Backup failover

TPA does not configure any kind of 'backup failover'. If the Postgres node from which you are backing up is down, backups will simply halt until the node is
back online. To manually connect the backup to the new primary, edit config.yml to add the backup hash to the new primary instance and re-run
tpaexec deploy .

Cluster configuration

Overview of configuration options

An example invocation of tpaexec configure for this architecture is shown below.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 101

https://www.enterprisedb.com/docs/efm/latest/04_configuring_efm/05_using_vip_addresses/

tpaexec configure ~/clusters/m1 \
 --architecture M1 \
 --platform aws --region eu-west-1 --instance-type t3.micro \
 --distribution Debian \
 --postgresql 14 \
 --failover-manager repmgr \
 --data-nodes-per-location 3

You can list all available options using the help command.

tpaexec configure --architecture M1 --help

The tables below describe the mandatory options for M1 and additional important options. More detail on the options is provided in the following section.

Mandatory Options

Parameter Description

--architecture (-a) Must be set to M1 .

Postgres flavour and version (e.g. --postgresql 15) A valid flavour and version specifier.

One of:
- --failover-manager {efm, repmgr,
patroni}
- --enable-efm
- --enable-repmgr
- --enable-patroni

Select the failover manager from efm , repmgr and
patroni .

Additional Options

Parameter Description Behaviour if omitted

--platform One of aws , docker , bare . Defaults to aws .

--location-
names

A space-separated list of location names. The number of locations is equal to the number of names
supplied.

A single location called
"main" is used.

--primary-
location

The location where the primary server will be. Must be a member of location-names . The first listed location
is used.

--data-
nodes-per-
location

A number from 1 upwards. In each location, one node will be configured to stream directly from the
cluster's primary node, and the other nodes, if present, will stream from that one. Defaults to 2.

--witness-
only-
location

A location name, must be a member of location-names . This location will be populated with a
single witness node only.

No witness-only location
is added.

--single-
node-
location

A location name, must be a member of location-names . This location will be populated with a
single data node only.

No single-node location
is added.

--enable-
haproxy

Two additional nodes will be added as a load balancer layer.
Only supported with Patroni as the failover manager.

HAproxy nodes will not
be added to the cluster.

--enable-
pgbouncer

PgBouncer will be configured in the Postgres nodes to pool connections for the primary. PgBouncer will not be
configured in the cluster.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 102

--patroni-
dcs

Select the Distributed Configuration Store backend for patroni.
Only option is etcd at this time.
Only supported with Patroni as the failover manager.

Defaults to etcd .

--efm-bind-
by-hostname

Enable efm to use hostnames instead of IP addresses to configure the cluster bind.address . Defaults to use IP
addresses

Parameter Description Behaviour if omitted

More detail about M1 configuration

You may also specify any of the options described by tpaexec help configure-options .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 103

17 aws

TPA fully supports provisioning production clusters on AWS EC2.

API access setup

To use the AWS API, you must:

Obtain an access keypair
Add it to your configuration

For example,

The IAM user should at least have following set of permissions so tpaexec can use it to provision ec2 resources.

ec2:AssociateRouteTable
ec2:AttachInternetGateway
ec2:AuthorizeSecurityGroupIngress
ec2:CreateInternetGateway
ec2:CreateRoute
ec2:CreateRouteTable
ec2:CreateSecurityGroup
ec2:CreateSubnet
ec2:CreateTags
ec2:CreateVpc
ec2:DeleteKeyPair
ec2:DeleteRouteTable
ec2:DeleteSecurityGroup
ec2:DeleteSubnet
ec2:DeleteVpc
ec2:DescribeImages
ec2:DescribeInstanceStatus
ec2:DescribeInstances
ec2:DescribeInternetGateways
ec2:DescribeKeyPairs
ec2:DescribeRouteTables
ec2:DescribeSecurityGroups
ec2:DescribeSubnets
ec2:DescribeTags
ec2:DescribeVolumes
ec2:DescribeVpcAttribute
ec2:DescribeVpcClassicLink
ec2:DescribeVpcClassicLinkDnsSupport
ec2:DescribeVpcs
ec2:DisassociateRouteTable
ec2:ImportKeyPair
ec2:ModifyVpcAttribute
ec2:RevokeSecurityGroupIngress
ec2:RunInstances

[tpa]$ cat >
~/.aws/credentials
[default]
aws_access_key_id =
AKIAIOSFODNN7EXAMPLE
aws_secret_access_key =
wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 104

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://boto.readthedocs.org/en/latest/boto_config_tut.html

ec2:TerminateInstances
iam:AddRoleToInstanceProfile
iam:CreateInstanceProfile
iam:CreateRole
iam:DeleteInstanceProfile
iam:DeleteRole
iam:DeleteRolePolicy
iam:GetInstanceProfile
iam:GetRole
iam:GetRolePolicy
iam:ListAttachedRolePolicies
iam:ListGroups
iam:ListInstanceProfiles
iam:ListInstanceProfilesForRole
iam:ListRolePolicies
iam:ListRoles
iam:ListUsers
iam:PassRole
iam:PutRolePolicy
iam:RemoveRoleFromInstanceProfile
kms:CreateGrant
kms:GenerateDataKeyWithoutPlaintext
s3:CreateBucket
s3:GetBucketVersioning
s3:GetObject
s3:GetObjectTagging
s3:ListAllMyBuckets
s3:ListBucket
s3:ListBucketVersions
s3:PutBucketOwnershipControls
s3:PutObject
s3:PutObjectAcl

Introduction

The service is physically subdivided into regions and availability zones. An availability zone is represented by a region code followed by a single letter, e.g.,
eu-west-1a (but that name may refer to different locations for different AWS accounts, and there is no way to coordinate the interpretation between
accounts).

AWS regions are completely isolated from each other and share no resources. Availability zones within a region are physically separated, and logically
mostly isolated, but are connected by low-latency links and are able to share certain networking resources.

Networking

All networking configuration in AWS happens in the context of a Virtual Private Cloud within a region. Within a VPC, you can create subnets that is tied to
a specific availability zone, along with internet gateways, routing tables, and so on.

You can create any number of Security Groups to configure rules for what inbound and outbound traffic is permitted to instances (in terms of protocol, a
destination port range, and a source or destination IP address range).

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 105

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#vpc-security-groups

Instances

AWS EC2 offers a variety of instance types with different hardware configurations at different price/performance points. Within a subnet in a particular
availability zone, you can create EC2 instances based on a distribution image known as an AMI, and attach one or more EBS volumes to provide persistent
storage to the instance. You can SSH to the instances by registering an SSH public key.

Instances are always assigned a private IP address within their subnet. Depending on the subnet configuration, they may also be assigned an ephemeral
public IP address (which is lost when the instance is shut down, and a different ephemeral IP is assigned when it is started again). You can instead assign
a static region-specific routable IP address known as an Elastic IP to any instance.

For an instance to be reachable from the outside world, it must not only have a routable IP address, but the VPC's networking configuration (internet
gateway, routing tables, security groups) must also align to permit access.

Configuration

Here's a brief description of the AWS-specific settings that you can specify via tpaexec configure or define directly in config.yml.

Regions

You can specify one or more regions for the cluster to use with --region or --regions . TPA will generate the required vpc entries associated to
each of them and distribute locations into these regions evenly by using different availability zones while possible.

regions are differents from locations , each location belongs to a region (and an availability zone inside this region). regions are AWS specific
objects, locations are cluster objects.

Note: When specifying multiple regions, you need to manually edit network configurations:

ec2_vpc entries must have non-overlaping cidr networks to allow use of AWS vpc peering. by default TPA will set all cidr to 10.33.0.0/16 .
See VPC for more informations.
each location must be updated with subnet that match the ec2_vpc cidr they belong to. See Subnets for more informations.
TPA creates security groups with basic rules under cluster_rules and those need to be updated to match ec2_vpc cidr for each subnet
cidr. see Security groups for more informations.
VPC peering must be setup manually before tpaexec deploy . We recommand creating VPCs and required VPC peerings before running
tpaexec configure and using vpc-id in config.yml. See VPC for more informations.

VPC (required)

You must specify a VPC to use:

ec2_vpc:
 Name: Test
 cidr: 10.33.0.0/16

This is the default configuration, which creates a VPC named Test with the given CIDR if it does not exist, or uses the existing VPC otherwise.

To create a VPC, you must specify both the Name and the cidr. If you specify only a VPC Name, TPA will fail if a matching VPC does not exist.

If TPA creates a VPC, tpaexec deprovision will attempt to remove it, but will leave any pre-existing VPC alone. (Think twice before creating new
VPCs, because AWS has a single-digit default limit on the number of VPCs per account.)

If you need more fine-grained matching, or to specify different VPCs in different regions, you can use the expanded form:

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 106

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html#concepts-public-addresses
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

ec2_vpc:
 eu-west-1:
 Name: Test
 cidr: 172.16.0.0/16
 us-east-1:
 filters:
 vpc-id: vpc-nnn
 us-east-2:
 Name: Example
 filters:
 [filter expressions]

AMI (required)

You must specify an AMI to use:

ec2_ami:
 Name: xxx
 Owner: self

You can add filter specifications for more precise matching:

ec2_ami:
 Name: xxx
 Owner: self
 filters:
 architecture: x86_64
 [more key/value filters]

(By default, tpaexec configure will select a suitable ec2_ami for you based on the --distribution argument.)

Subnets (optional)

Every instance must specify its subnet (in CIDR form, or as a subnet-xxx id). You may optionally specify the name and availability zone for each subnet that
we create:

ec2_vpc_subnets:
 us-east-1:
 192.0.2.0/27:
 az: us-east-1b
 Name: example1
 192.0.2.100/27:
 az: us-east-1b
 Name: example2

Security groups (optional)

By default, we create a security group for the cluster. To use one or more existing security groups, set:

ec2_groups:
 us-east-1:
 group-name:
 - foo

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 107

If you want to customise the rules in the default security group, set cluster_rules :

cluster_rules:
- cidr_ip: 0.0.0.0/0
 from_port: 22
 proto: tcp
 to_port: 22
- cidr_ip: 192.0.2.0/27
 from_port: 0
 proto: tcp
 to_port: 65535
- cidr_ip: 192.0.2.100/27
 from_port: 0
 proto: tcp
 to_port: 65535

This example permits ssh (port 22) from any address, and TCP connections on any port from specific IP ranges. (Note: from_port and to_port define a
numeric range of ports, not a source and destination.)

If you set up custom rules or use existing security groups, you must ensure that instances in the cluster are allowed to communicate with each other as
required (e.g., allow tcp/5432 for Postgres).

Internet gateways (optional)

By default, we create internet gateways for every VPC, unless you set:

ec2_instance_reachability: private

For more fine-grained control, you can set:

ec2_vpc_igw:
 eu-west-1: yes
 eu-central-1: yes
 us-east-1: no

SSH keys (optional)

Set this to change the name under which we register our SSH key.
ec2_key_name: tpa_cluster_name
#
Set this to use an already-registered key.
ec2_instance_key: xxx

S3 bucket (optional)

TPA requires access to an S3 bucket to provision an AWS cluster. This bucket is used to temporarily store files such as SSH host keys, but may also be
used for other cluster data (such as backups).

By default, TPA will use an S3 bucket named edb-tpa-<aws-account-user-id> for any clusters you provision. (If the bucket does not exist, you
will be asked to confirm that you want TPA to create it for you.)

To use an existing S3 bucket instead, set

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 108

cluster_bucket: name-of-bucket

(You can also set cluster_bucket: auto to accept the default bucket name without the confirmation prompt.)

TPA will never remove any S3 buckets when you deprovision the cluster. To remove the bucket yourself, run:

aws s3 rb s3://<bucket> --force

The IAM user you are using to provision the instances must have read and write access to this bucket. During provisioning, tpaexec will provide instances
with read-only access to the cluster_bucket through the instance profile.

Elastic IP addresses

To use elastic IP addresses, set assign_elastic_ip to true in config.yml, either in instance_defaults to affect all the instances in your
cluster or individually on the separate instances as required. By default, this will allocate a new elastic ip address and assign it to the new instance. To use
an elastic IP address that has already been allocated but not yet assigned, use elastic_ip: 34.252.55.252 , substituting in your allocated
address.

Instance profile (optional)

Set this to change the name of the instance profile role we create.
cluster_profile: cluster_name_profile
#
Set this to use an existing instance profile (which must have all the
required permissions assigned to it).
instance_profile_name: xxx

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 109

18 bare(-metal servers)

Set platform: bare in config.yml

This platform is meant to support any server that is accessible via SSH, including bare-metal servers as well as already-provisioned servers on any cloud
platform (including AWS).

You must define the IP address(es) and username for each target server:

You must ensure that

1. TPA can ssh to the instance as ansible_user
2. The ansible_user has sudo access on the instance

SSH access

In the example above, TPA will ssh to xyzzy@192.0.2.1 to access the instance.

By default, TPA will run ssh-keygen to generate a new SSH keypair in your cluster directory. The private key is named id_cluster_name and the
public key is stored in id_cluster_name.pub .

You must either set ssh_key_file: /path/to/id_keyname to use a different key that the instance will accept, or configure the instance to allow
access from the generated key (e.g., use ssh-copy-id , which will append the contents of id_cluster_name.pub to
~xyzzy/.ssh/authorized_keys).

You must also ensure that ssh can verify the host key(s) of the instance. You can either add entries to the known_hosts file in your cluster directory, or
install the TPA-generated host keys from hostkeys/ssh_host_*_key* in your cluster directory into /etc/ssh on the instance (the generated
tpa_known_hosts file contains entries for these keys).

For example, to ssh in with the generated user key, but keep the existing host keys, you can do:

Run tpaexec ping ~/clusters/speedy to check if it's working. If not, append -vvv to the command to look at the complete ssh command-
line. (Note: Ansible will invoke ssh to execute a command like bash -c 'python3 && sleep 0' on the instance. If you run ssh commands by hand
while debugging, replace this with a command that produces some output and then exits instead, e.g., 'id' .)

For more details:

Use a different ssh key
Manage ssh host keys for bare instances

instances:
 - node: 1
 Name: igor
 platform: bare
 public_ip: 192.0.2.1
 private_ip: 192.0.2.222
 vars:
 ansible_user: xyzzy

$ cd ~/clusters/speedy
$ ssh-copy-id -i id_speedy xyzzy@192.0.2.1
$ ssh-keyscan -H 192.0.2.1 >> tpa_known_hosts

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 110

Distribution support

TPA will try to detect the distribution running on target instances, and fail if it is not supported. TPA currently supports Debian (10/11/12; or
buster/bullseye/bookworm), Ubuntu (16.04/18.04/20.04/22.04; or xenial/bionic/focal/jammy), and RHEL/CentOS/Rocky/AlmaLinux (7.x/8.x) on bare
instances.

IP addresses

You can specify the public_ip , private_ip , or both for any instance.

TPA uses these IP addresses in two ways: first, to ssh to the instance to execute commands during deployment; and second, to set up communications
within the cluster, e.g., for /etc/hosts or to set primary_conninfo for Postgres.

If you specify a public_ip , it will be used to ssh to the instances during deployment. If you specify a private_ip , it will be used to set up
communications within the cluster. If you specify both, the public_ip will be used during deployment, and the private_ip for cluster
communications.

If you specify only one or the other, the address will be used for both purposes. For example, you could set only public_ip for servers on different
networks, or only private_ip if you're running TPA inside a closed network. (Instead of using public/private, you can set ip_address if you need to
specify only one IP address.)

Starting afresh

To start afresh with a cluster on the bare platform, use the appropriate external tools to reinstall, reimage, or reprovision the servers, and repeat the
process described in this document. If your new servers have different IP addresses or if you have a complex ssh setup, it may be easier to run tpaexec
deprovision to remove all the locally created files and then tpaexec provision to recreate them, followed by repeating the process from this document, as
above.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 111

19 Docker

TPA can create Docker containers and deploy a cluster to them. At present, it sets up containers to run systemd and other services as if they were ordinary
VMs.

Deploying to docker containers is an easy way to test different cluster configurations. It is not meant for production use.

Synopsis

Just select the platform at configure-time:

Operating system selection

Use the standard --os Debian/Ubuntu/RedHat/SLES configure option to select which distribution to use for the containers. TPA will build its own
systemd-enabled images for this distribution. These images will be named with a tpa/ prefix, e.g., tpa/redhat:8 .

Use --os-image some/image:name to specify an existing systemd-enabled image instead. For example, the centos/systemd image (based on
CentOS 7) can be used in this way.

TPA does not support Debian 8 (jessie) or Ubuntu 16.04 (xenial) for Docker containers, because of bugs in the old version of systemd shipped on those
distributions.

Installing Docker

We test TPA with the latest stable Docker-CE packages.

This documentation assumes that you have a working Docker installation, and are familiar with basic operations such as pulling images and creating
containers.

Please consult the Docker documentation if you need help to install Docker and get started with it.

On MacOS X, you can install "Docker Desktop for Mac" and launch Docker from the application menu.

Cgroups

TPA supports Docker containers on hosts running cgroups version 1 or 2. On a host running cgroups2, instances running RHEL 7 are not supported.

If you need to use RHEL 7 instances but your host is running cgroups version 2, you can switch to cgroups version 1 as follows.

On Debian-family Linux distributions:

[tpa]$ tpaexec configure clustername --platform docker
[…]
[tpa]$ tpaexec provision
clustername
[tpa]$ tpaexec deploy
clustername

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 112

https://hub.docker.com/r/centos/systemd/
https://docs.docker.com/
https://docs.docker.com/engine/install/
https://docs.docker.com/get-started/
https://hub.docker.com/editions/community/docker-ce-desktop-mac/

$ echo 'GRUB_CMDLINE_LINUX=systemd.unified_cgroup_hierarchy=false' > \
 /etc/default/grub.d/cgroup.cfg
$ update-grub
$ reboot

On RedHat-family Linux distributions:

$ grubby --args=systemd.unified_cgroup_hierarchy=false --update-kernel=ALL
$ reboot

On MacOS:

1. Edit ~/Library/Group\ Containers/group.com.docker/settings.json and make the following replacement "deprecatedCgroupv1": false →
"deprecatedCgroupv1": true

2. Restart Docker Desktop app

Permissions

TPA expects the user running it to have permission to access to the Docker daemon (typically by being a member of the docker group that owns
/var/run/docker.sock). Run a command like this to check if you have access:

Warning

Giving a user the ability to speak to the Docker daemon lets them trivially gain root on the Docker host. Only trusted users should have access to
the Docker daemon.

Docker container privileges

Privileged containers

By default TPA provisions Docker containers in unprivileged mode, with no added Linux capabilities flags. Such containers cannot manage host firewall
rules, file systems, block devices, or most other tasks that require true root privileges on the host.

If you require your containers to run in privileged mode, set the privileged boolean variable for the instance(s) that need it, or globally in
instance_defaults , e.g.:

instance_defaults:
 privileged: true

Warning

Running containers in privileged mode allows the root user or any process that can gain root to load kernel modules, modify host firewall rules,
escape the container namespace, or otherwise act much as the real host "root" user would. Do not run containers in priviliged mode unless you
really need to.

See man capabilities for details on Linux capabilities flags.

security_opts and the no-new-privileges flag

[tpa]$ docker version --format
'{{.Server.Version}}'
19.03.12

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 113

security_opts and the no-new-privileges flag

tpaexec can start docker containers in a restricted mode where processes cannot increase their privileges. setuid binaries are restricted, etc. Enable this
in tpaexec with the instance_defaults or per-container variable docker_security_opts :

instance_defaults:
 docker_security_opts:
 - no-new-privileges

Other arguments to docker run 's --security-opts are also accepted, e.g. SELinux user and role.

Linux capabilities flags

tpaexec exposes Docker's control over Linux capabilities flags with the docker_cap_add list variable, which may be set per-container or in
instance_defaults . See man capabilities , the docker run documentation and the documentation for the Ansible
docker_containers module for details on capabilities flags.

Docker's --cap-drop is also supported via the docker_cap_drop list.

For example, to run a container as unprivileged, but give it the ability to modify the system clock, you might write:

instance_defaults:
 privileged: false
 docker_cap_add:
 - sys_time
 docker_cap_drop:
 - all

Docker storage configuration

The default Docker configuration on many hosts uses lvm-loop block storage and is not suitable for production deployments. Run docker info to
check which storage driver you are using. If you are using the loopback scheme, you will see something like this:

 Storage Driver: devicemapper
 …
 Data file: /dev/loop0

Consult the Docker documentation for more information on storage configuration:

Storage Drivers
Configuring lvm-direct for production

Docker MTU settings

By default, Docker networks have a Maximum Transmission Unit (MTU) of 1500 bytes. If this is greater than the MTU of your host system's network
interface you may experience problems routing connections through that interface to Docker containers. You can check the MTU of your network
interfaces using the command ipconfig | grep mtu , ip |grep mtu or similar. You can change the MTU of a Docker network provisioned by
TPA by adding the appropriate driver options to the network in config.yml as shown below.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 114

https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/#configure-direct-lvm-mode-for-production

docker_networks:
- ipam_config:
 - subnet: 10.33.214.192/28
 name: tpa-docker
 driver_options:
 com.docker.network.driver.mtu: 1400

Warning

The MTU can only be set when the Docker network is first provisioned. Subsequent changes in config.yml will have no effect.

You can verify the MTU of a Docker network by running one of the commands above from inside a container attached to that network. You can also use
docker network inspect <network-name> | grep mtu but this only works when the MTU has been explicitly set.

Docker container management

All of the docker containers in a cluster can be started and stopped together using the start-containers and stop-containers commands:

These commands don't provision or deprovision containers, or even connect to them; they are intended to save resources when you're temporarily not
using a docker cluster that you need to keep available for future use.

For a summary of the provisioned docker containers in a cluster, whether started or stopped, use the list-containers command:

[tpa]$ tpaexec start-containers
clustername
[tpa]$ tpaexec stop-containers
clustername

[tpa]$ tpaexec list-containers
clustername

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 115

20 Cluster configuration

With TPA, the way to make any configuration change to a cluster is to edit config.yml and run the provision/deploy/test cycle. The process is carefully
designed to be idempotent, and to make changes only in response to a change in the configuration or a change on the instances.

The tpaexec configure command will generate a sensible config.yml file for you, but it covers only the most common topology and configuration
options. If you need something beyond the defaults, or you need to make changes after provisioning the cluster, you will need to edit config.yml anyway.

This page is an overview of the configuration mechanisms available. There's a separate page with more details about the specific variables you can set to
customise the deployment process.

config.yml

Your config.yml file is a YAML format text file that represents all aspects of your desired cluster configuration. Here's a minimal example of a cluster
with two instances:

These three definitions are central to your cluster configuration. The file may contain many other definitions (including platform-specific details), but the
list of instances with vars set either for one instance or for the whole cluster are the basic building blocks of every TPA configuration.

All tpaexec configure options translate to config.yml variables in some way. A single option may affect several variables (e.g., --bdr-version
could set postgres_version , edb_repositories , extra_postgres_extensions , and so on), but you can always accomplish with an
editor what you could by running the command.

In terms of YAML syntax, config.yml as a whole represents a hash with keys such as cluster_vars and instances . You must ensure that each key
is defined only once. If you were to inadvertently repeat the cluster_vars , say, the second definition would completely override the former, and your
next deployment could make unintended changes because of missing (shadowed) variables.

cluster_name:
speedy

cluster_vars:
 postgres_version: 14

instances:
- node: 1
 Name:
one
 role: primary
 platform:
docker
 vars:
 ansible_user: root
 x: 42

- node: 2
 Name:
two
 role: replica
 platform:
docker
 upstream:
one
 vars:
 ansible_user: root
 x: 53

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 116

https://yaml.org/

TPA checks the consistency of the overall cluster topology (for example, if you declare an instance with the role "replica", you must also declare the name
of its upstream instance, and that instance must exist), but it will not prevent you from setting any variable you like on the instances. You must exercise
due caution, and try out changes in a test environment before rolling them out into production.

Variables

In Ansible terminology, most configuration settings are “inventory variables”—TPA will translate cluster_vars into group_vars (that apply to the
cluster as a whole) and each instance's vars into host_vars in the inventory during provisioning, and deployment will use the inventory values.
After you change config.yml, you must remember to run tpaexec provision before tpaexec deploy .

Any variable can be set for the entire cluster, or an individual host, or both; host variables override group variables. In practice, setting x: 42 in
cluster_vars is no different from setting it in every host's vars . A host that needs x during deployment will see the value 42 either way. A host

will always see the most specific value, so it is convenient to set some default value for the group and override it for specific instances as required.

Whenever possible, defining variables in cluster_vars and overriding them for specific instances results in a concise configuration that is easier to
review and change (less repetition). Beyond that, it's up to you to decide whether any given setting makes more sense as a group or host variable.

Cluster variables

The keys under cluster_vars may map to any valid YAML type, and will be translated directly into group variables in the Ansible inventory:

Warning

Any variables used in templates must be defined at the top-level of config.yml (the same level as the cluster_name variable)

Please refer to the following example below.

In this case, tpaexec provision will write three variables (a string, a list, and a hash) to the inventory in
group_vars/tag_Cluster_name/01-cluster_name.yml .

cluster_vars:
 postgres_version: 14
 edb_repositories:
 - enterprise
 - postgres_distributed
 postgres_conf_settings:
 bdr.trace_replay: true

cluster_name: 'speedy'
postgres_version: '14' # Defined at top-
level
cluster_vars:
 postgres_version: "{{ postgres version }}" # Templated with top-level variable
 postgres_data_dir: "/data/{{ cluster_name }}/edb{{ postgres_version }}/data" # Templated with top-level
variable

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 117

Instance variables

This documentation uses the term “instance variables” to refer to any variables that are defined for a specific instance in config.yml. For example, here's a
typical instance definition:

The variables defined in this instance's vars will all become host variables in the inventory, but all host vars in the inventory do not come from vars
alone. Some other instance settings, including platform , location , volumes , and role are also copied to the inventory as host vars (but you
cannot define these settings under vars or cluster_vars instead).

The settings outside vars may describe the properties of the instance (e.g., Name and node) or its place in the topology of the cluster (e.g., role ,
backup) or they may be platform-specific attributes (e.g., instance type and volumes). Other than knowing that they cannot be defined under
vars , it is rarely necessary to distinguish between these instance “settings” and instance “variables”.

In this case, tpaexec provision will write a number of host variables to the inventory in host_vars/unwind/01-instance_vars.yml .

instance_defaults

This is a mechanism to further reduce repetition in config.yml. It is most useful for instance settings that cannot be defined as cluster_vars . For
example, you could write the following:

instances:
- Name:
unwind
 node: 1
 backup: unkempt
 location:
a
 role:
 - primary
 -
bdr
 volumes:
 - device_name: root
 encrypted: true
 volume_size: 16
 volume_type:
gp2
 - device_name: /dev/xvdf
 encrypted: true
 vars:
 volume_for: postgres_data
 volume_size: 64
 volume_type:
gp2
 platform:
aws
 type:
t3.micro
 vars:
 ansible_user: ec2-user
 postgres_conf_directory: /opt/postgres/conf

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 118

Whatever you specify under instance_defaults serves as the default for every entry in instances . In this example, it saves spelling out the
platform and type of each instance, and makes it easier to change all your instances to a different type. If any instance specifies a different value, it

will of course take precedence over the default.

It may help to think of instance_defaults as being a macro facility to use in defining instances . What is ultimately written to the inventory
comes from the (expanded) definition of instances alone. If you're trying to decide whether to put something in cluster_vars or
instance_defaults , it probably belongs in the former unless it cannot be defined as a variable (e.g., platform or type), which is true for many

platform-specific properties (such as AWS resource tags) that are used only in provisioning, and not during deployment.

The instance_defaults mechanism does nothing to stop you from using it to fill in the vars for an instance (default hash values are merged with
any hash specified in the instances entry). However, there is no particular advantage to doing this rather than setting the same default in
cluster_vars and overriding it for an instance if necessary. When in doubt, use cluster_vars .

Locations

You can also specify a list of locations in config.yml:

instance_defaults:
 platform:
aws
 type:
t3.micro
 tags:
 AWS_ENVIRONMENT_SPECIFIC_TAG_KEY:
some_mandated_value

instances:
- node: 1
 Name:
one
- node: 2
 Name:
two
-
…

locations:
- Name: first
 az: eu-west-
1a
 region: eu-west-
1
 subnet:
10.33.110.128/28

- Name:
second
 az: us-east-
1b
 region: us-east-
1
 subnet: 10.33.75.0/24

instances:
- node: 1
 Name:
one
 location: first
…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 119

If an instance specifies location: first (or location: 0), the settings under that location serve as defaults for that instance. Again, just like
instance_defaults , an instance may override the defaults that it inherits from its location. And again, you can use this feature to fill in vars for

an instance. This can be useful if you have some defaults that apply to only half your instances, and different values for the other half (as with the
platform-specific settings in the example above).

Locations represent a collection of settings that instances can “opt in” to. You can use them to stand for different data centres, AWS regions, Docker
hosts, or something else entirely. TPA does not expect or enforce any particular interpretation.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 120

21 Instance configuration

This page presents an overview of the various controls that TPA offers to customise the deployment process on cluster instances, with links to more
detailed documentation.

Before you dive into the details of deployment, it may be helpful to read an overview of configuring a cluster to understand how cluster and instance
variables and the other mechanisms in config.yml work together to allow you to write a concise, easy-to-review configuration.

System-level configuration

The first thing TPA does is to ensure that Python is bootstrapped and ready to execute Ansible modules (a distribution-specific process). Then it completes
various system-level configuration tasks before moving on to Postgres configuration below.

Distribution support
Python environment (preferred_python_version)
Environment variables (e.g., https_proxy)

Package repositories

You can use the pre-deploy hook to execute tasks before any package repositories are configured.

Configure YUM repositories (for RHEL, Rocky and AlmaLinux)

Configure APT repositories (for Debian and Ubuntu)

Configure EDB repositories (on any system)

Configure a local package repository (to ship packages to target instances)

You can use the post-repo hook to execute tasks after package repositories have been configured (e.g., to correct a problem with the repository
configuration before installing any packages).

Package installation

Once the repositories are configured, packages are installed at various stages throughout the deployment, beginning with a batch of system packages:

Install non-Postgres packages (e.g., acl, openssl, sysstat)

Postgres and other components (e.g., Barman, repmgr, pgbouncer) will be installed separately according to the cluster configuration; these are
documented in their own sections below.

Other system-level tasks

Create and mount filesystems (including RAID, LUKS setup)
Upload artifacts (files, directories, tar archives)
Set sysctl values
Configure /etc/hosts
Manage ssh_known_hosts entries
Add system locale

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 121

Skipping deployment completely

To prevent TPA from doing any part of the deployment process on an instance - in other words, if you want TPA to provision the instance and then leave it
alone - set the provision_only setting for the instance to true in config.yml . This setting will make TPA omit the instance entirely from the
inventory which tpaexec deploy sees.

Postgres

Postgres configuration is an extended process that goes hand-in-hand with setting up other components like repmgr and pgbouncer. It begins with
installing Postgres itself.

Version selection

Use the configure options to select a Postgres flavour and version, or set postgres_version in config.yml to specify which Postgres major version
you want to install.

That's all you really need to do to set up a working cluster. Everything else on this page is optional. You can control every aspect of the deployment if you
want to, but the defaults are carefully tuned to give you a sensible cluster as a starting point.

Installation

The default postgres_installation_method is to install packages for the version of Postgres you selected, along with various extensions,
according to the architecture's needs:

Install Postgres and Postgres-related packages (e.g., pglogical, BDR, etc.)

Build and install Postgres and extensions from source (for development and testing)

Whichever installation method you choose, TPA can give you the same cluster configuration with a minimum of effort.

Configuration

Configure the postgres Unix user

Run initdb to create the PGDATA directory

Configure pg_hba.conf

Configure pg_ident.conf

Configure postgresql.conf

You can use the postgres-config hook to execute tasks after the Postgres configuration files have been installed (e.g., to install additional configuration
files).

Once the Postgres configuration is in place, TPA will go on to install and configure other components such as Barman, repmgr, pgbouncer, and haproxy,
according to the details of the architecture.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 122

Other components

Configure Barman
Configure pgbouncer
Configure haproxy
Configure HARP
Configure EFM

Configuring and starting services

TPA will now install systemd service unit files for each service. The service for Postgres is named postgres.service , and can be started or stopped
with systemctl start postgres .

In the first deployment, the Postgres service will now be started. If you are running tpaexec deploy again, the service may be reloaded or restarted
depending on what configuration changes you may have made. Of course, if the service is already running and there are no changes, then it's left alone.

In any case, Postgres will be running at the end of this step.

After starting Postgres

Create Postgres users

Create Postgres tablespaces

Create Postgres databases

Configure pglogical replication

Configure .pgpass

You can use the postgres-config-final hook to execute tasks after the post-startup Postgres configuration has been completed (e.g., to perform SQL
queries to create objects or load data).

Configure BDR

You can use the post-deploy hook to execute tasks after the deployment process has completed.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 123

22 Building from source

Warning

This option is intended for developers and advanced users. Only software built and tested by EDB is supported by EDB. Please refer to Self-
Managed Supported Open Source Software.

TPA can build Postgres and other required components from source and deploy a cluster with exactly the same configuration as with the default
packaged installation. This makes it possible to deploy repeatedly from source to quickly test changes in a realistic, fully-configured cluster that
reproduces every aspect of a particular setup, regardless of architecture or platform.

You can even combine packaged installations of certain components with source builds of others. For example, you can install Postgres from packages
and compile pglogical and PGD from source, but package dependencies would prevent installing pglogical from source and PGD from packages.

Source builds are meant for use in development, testing, and for support operations.

Quickstart

Spin up a cluster with 2ndQPostgres, pglogical3, and bdr all built from stable branches:

As above, but set up a cluster that builds 2ndQPostgres source code from the official git repository and uses the given local work trees to build pglogical
and BDR. This feature is specific to Docker:

After deploying your cluster, you can use tpaexec deploy … --skip-tags build-clean on subsequent runs to reuse build directories.
(Otherwise the build directory is emptied before starting the build.)

Read on for a detailed explanation of how to build Postgres, pglogical, BDR, and other components with custom locations and build parameters.

$ tpaexec configure ~/clusters/speedy -a BDR-Always-ON \
 --layout bronze
\
 --harp-consensus-protocol etcd \
 --install-from-source \
 2ndqpostgres:2QREL_13_STABLE_dev \
 pglogical3:REL3_7_STABLE
\
 bdr3:REL3_7_STABLE

$ tpaexec configure ~/clusters/speedy \
 --architecture BDR-Always-ON --layout bronze
\
 --harp-consensus-protocol etcd \
 --platform docker
\
 --install-from-source 2ndqpostgres:2QREL_13_STABLE_dev \
 pglogical3 bdr3 \
 --local-source-directories \
 pglogical3:~/src/pglogical
bdr3:~/src/bdr

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 124

https://www.enterprisedb.com/product-compatibility/edb-supported-open-source-software.pdf

Configuration

There are two aspects to configuring source builds.

If you just want a cluster running a particular combination of sources, run tpaexec configure to generate a configuration with sensible defaults to
download, compile, and install the components you select. You can build Postgres or Postgres Extended, pglogical, and BDR, and specify branch names to
build from, as shown in the examples above.

The underlying mechanism is capable of much more than the command-line options allow. By editing config.yml, you can clone different source
repositories, change the build location, specify different configure or build parameters, redefine the build commands entirely, and so on. You can,
therefore, build things other than Postgres, pglogical, and BDR.

The available options are documented here:

Building Postgres from source

Building extensions with install_from_source

Local source directories

You can use TPA to provision Docker containers that build Postgres and/or extensions from your local source directories instead of from a Git repository.

Suppose you're using --install-from-source to declare what you want to build:

By default, this will clone the known repositories for Postgres Extended, pglogical3, and bdr3, check out the given branches, and build them. But you can
add --local-source-directories to specify that you want the sources to be taken directly from your host machine instead:

This configuration will still install Postgres Extended from the repository, but it obtains pglogical3 and bdr3 sources from the given directories on the
host. These directories are bind-mounted read-only into the Docker containers at the same locations where the git repository would have been cloned to,
and the default (out-of-tree) build proceeds as usual.

If you specify a local source directory for a component, you cannot specify a branch to build (cf. pglogical3:REL3_7_STABLE vs. pglogical3 for

$ tpaexec configure ~/clusters/speedy \
 --architecture BDR-Always-ON --layout bronze
\
 --harp-consensus-protocol etcd \
 --platform docker
\
 --install-from-source 2ndqpostgres:2QREL_13_STABLE_dev \
 pglogical3:REL3_7_STABLE bdr3:REL3_7_STABLE
\

…

$ tpaexec configure ~/clusters/speedy \
 --architecture BDR-Always-ON --layout bronze
\
 --harp-consensus-protocol etcd \
 --platform docker
\
 --install-from-source 2ndqpostgres:2QREL_13_STABLE_dev \
 pglogical3 bdr3 \
 --local-source-directories \
 pglogical3:~/src/pglogical bdr3:~/src/bdr
\

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 125

If you specify a local source directory for a component, you cannot specify a branch to build (cf. pglogical3:REL3_7_STABLE vs. pglogical3 for
--install-from-source in the examples above). The source directory is mounted read-only in the containers, so TPA cannot do anything to change

it—neither git pull , nor git checkout . You get whichever branch you have checked out locally, uncommitted changes and all.

Using --local-source-directories includes a list of Docker volume definitions in config.yml:

ccache

TPA installs ccache by default for source builds of all kinds. When you are using a Docker cluster with local source directories, by default a new Docker
volume is attached to the cluster's containers to serve as a shared ccache directory. This volume is completely isolated from the host, and is removed
when the cluster is deprovisioned.

Use the --shared-ccache /path/to/host/ccache configure option to specify a longer-lived shared ccache directory. This directory will be
bind-mounted r/w into the containers, and its contents will be shared between the host and the containers.

(By design, there is no way to install binaries compiled on the host directly into the containers.)

Rebuilding

After deploying a cluster with components built from source, you can rebuild those components quickly without having to rerun tpaexec deploy by
using the tpaexec rebuild-sources command. This will run git pull for any components built from git repositories on the containers, and
rebuild all components.

local_source_directories:
 - /home/ams/src/pglogical:/opt/postgres/src/pglogical:ro
 -
/home/ams/src/bdr:/opt/postgres/src/bdr:ro
 - ccache-bdr_src_36-20200828200021:/root/.ccache:rw

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 126

23 TPA hooks

TPA can set up fully-functional clusters with no user intervention, and already provides a broad variety of settings to control your cluster configuration,
including custom repositories and packages, custom Postgres configuration (both pg_hba.conf and postgresql.conf), and so on.

You can write hook scripts to address specific needs that are not met by the available configuration settings. Hooks allow you to execute arbitrary Ansible
tasks during the deployment.

Hooks are the ultimate extension mechanism for TPA, and there is no limit to what you can do with them. Please use them with caution, and keep in mind
the additional maintenance burden you are taking on. The TPA developers have no insight into your hook code, and cannot guarantee compatibility
between releases beyond invoking hooks at the expected stage.

Summary

If you create files with specific names under the hooks subdirectory of your cluster directory, TPA will invoke them at various stages of the deployment
process, as described below.

Hook scripts are invoked with include_tasks , so they are expected to be YAML files containing a list of Ansible tasks (not a playbook, which contains
a list of plays). Unless otherwise documented below, hooks are unconditionally executed for all hosts in the deployment.

General-purpose hooks

pre-deploy

TPA invokes hooks/pre-deploy.yml immediately after bootstrapping Python—but before doing anything else like configuring repositories and
installing packages. This is the earliest stage at which you can execute your own code.

You can use this hook to set up custom repository configuration, beyond what you can do with apt_repositories or yum_repositories .

post-repo

TPA invokes hooks/post-repo.yml after configuring package repositories. You can use it to make corrections to the repository configuration before
beginning to install packages.

pre-initdb

TPA invokes hooks/pre-initdb.yml before deciding whether or not to run initdb to create PGDATA if it does not exist. You should not ordinarily
need to use this hook (but if you use it to create PGDATA yourself, then TPA will skip initdb).

$ mkdir ~/clusters/speedy/hooks
$ cat > ~/clusters/speedy/hooks/pre-
deploy.yml

- debug: msg="hello
world!"

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 127

postgres-config

TPA invokes hooks/postgres-config.yml after generating Postgres configuration files, including pg_hba.conf and the files in conf.d, but before
the server has been started.

You can use this hook, for example, to create additional configuration files under conf.d .

postgres-config-final

TPA invokes hooks/postgres-config-final.yml after starting Postgres and creating users, databases, and extensions. You can use this hook to
execute SQL commands, for example, to perform custom extension configuration or create database objects.

barman-pre-config

TPA invokes hooks/barman-pre-config.yml after installing Barman and setting up Barman users, but before generating any Barman
configuration.

You can use this hook, for example, to perform any tasks related with Barman certificate files or mount points.

efm-pre-config

TPA invokes hooks/efm-pre-config.yml after installing efm, creating its configuration directory, and setting up the efm user, but before
generating any efm configuration.

An example use of this hook is to install efm helper scripts.

harp-config

TPA invokes hooks/harp-config.yml after generating HARP configuration files, but before the HARP service has been started.

You can use this hook, for example, to perform any customizations to the HARP proxy that are not provided by the built-in interface of TPA.

Please note that this hook will be run in any node that installs HARP packages, including PGD nodes.

pgd-proxy-config

TPA invokes hooks/pgd-proxy-config.yml after generating PGD PROXY configuration files, but before the PGD PROXY service has been started.

You can use this hook, for example, to perform any customizations to the PGD Proxy that are not provided by the built-in interface of TPA.

Note that this hook will run in any node that installs PGD PROXY packages.

post-deploy

TPA invokes hooks/post-deploy.yml at the end of the deployment.

You can go on to do whatever you want after this stage.

If you use this hook to make changes to any configuration files that were generated or altered during the TPA deployment, you run the risk that the next
tpaexec deploy will overwrite your changes (since TPA doesn't know what your hook might have done).

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 128

PGD hooks

These hooks are specific to PGD deployments.

bdr-pre-node-creation

TPA invokes hooks/bdr-pre-node-creation.yml on all instances before creating a PGD node on any instance for the first time. The hook will not
be invoked if all required PGD nodes already exist.

bdr-post-group-creation

TPA invokes hooks/bdr-post-group-creation.yml on all instances after creating any PGD node group on the first_bdr_primary
instance. The hook will not be invoked if the required PGD groups already exist.

bdr-pre-group-join

TPA invokes hooks/bdr-pre-group-join.yml on all instances after creating, changing or removing the replication sets and configuring the
required subscriptions, before the node join.

You can use this hook to execute SQL commands and perform other adjustments to the replication set configuration and subscriptions that might be
required before the node join starts.

For example, you can adjust the PGD witness replication set to automatically add new tables and create DDL filters in general.

Other hooks

postgres-pre-update, postgres-post-update

The upgrade command invokes hooks/postgres-pre-update.yml on a particular instance before it installs any packages, and invokes
hooks/postgres-post-update.yml after the package installation is complete. Both hooks are invoked only on the instance being updated.

You can use these hooks to customise the update process for your environment (e.g., to install other packages and stop and restart services that TPA does
not manage).

New hooks

EDB adds new hooks to TPA as the need arises. If your use case is not covered by the existing hooks, please contact us to discuss the matter.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 129

24 Upgrading your cluster

The tpaexec upgrade command is used to upgrade the software running on your TPA cluster (tpaexec deploy will not perform upgrades).

(This command replaces the earlier tpaexec update-postgres command.)

Introduction

If you make any changes to config.yml, the way to apply those changes is to run tpaexec provision followed by tpaexec deploy .

The exception to this rule is that tpaexec deploy will refuse to install a different version of a package that is already installed. Instead, you must use
tpaexec upgrade to perform software upgrades.

Minor version upgrades only

tpaexec upgrade does NOT support MAJOR version upgrades of Postgres.

What TPA can upgrade is dependent on architecture:

The M1 architecture and all applicable failover managers for M1, upgrade will perform minor version upgrades of Postgres only.
With PGD architectures, upgrade will perform minor version upgrades of Postgres and the BDR extension.
With PGD architectures, and only in combination with the reconfigure command, upgrade can perform major-version upgrades
of the BDR extension.

Support for upgrading other cluster components is planned for future releases.

This command will try to perform the upgrade with minimal disruption to cluster operations. The exact details of the specialised upgrade process depend
on the architecture of the cluster, as documented below.

When upgrading, you should always use barman to take a backup before beginning the upgrade and disable any scheduled backups which would take
place during the time set aside for the upgrade.

In general, TPA will proceed instance-by-instance, stopping any affected services, installing new packages, updating the configuration if needed,
restarting services, and performing any runtime configuration changes, before moving on to do the same thing on the next instance. At any time during
the process, only one of the cluster's nodes will be unavailable.

When upgrading a cluster to PGD-Always-ON or upgrading an existing PGD-Always-ON cluster, you can enable monitoring of the status of your proxy
nodes during the upgrade by adding the option -e enable_proxy_monitoring=true to your tpaexec upgrade command line. If enabled,
this will create an extra table in the bdr database and write monitoring data to it while the upgrade takes place. The performance impact of enabling
monitoring is very small and it is recommended that it is enabled.

Configuration

In many cases, minor-version upgrades do not need changes to config.yml. Just run tpaexec upgrade , and it will upgrade to the latest available
versions of the installed packages in a graceful way (what exactly that means depends on the details of the cluster).

Sometimes an upgrade involves additional steps beyond installing new packages and restarting services. For example, in order to upgrade from BDR4 to
PGD5, one must set up new package repositories and make certain changes to the BDR node and group configuration during the process.

In such cases, where there are complex steps required as part of the process of effecting a software upgrade, tpaexec upgrade will perform those
steps. For example, in the above scenario, it will configure the new PGD5 package repositories (which deploy would also normally do).

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 130

However, it will make only those changes that are directly required by the upgrade process itself. For example, if you edit config.yml to add a new Postgres
user or database, those changes will not be done during the upgrade. To avoid confusion, we recommend that you tpaexec deploy any unrelated
pending changes before you begin the software upgrade process.

Upgrading from BDR-Always-ON to PGD-Always-ON

To upgrade from BDR-Always-ON to PGD-Always-ON (that is, from BDR3/4 to PGD5), first run tpaexec reconfigure :

This command will read config.yml, work out the changes necessary to upgrade the cluster, and write a new config.yml. For details of its invocation, see
the command's own documentation. After reviewing the changes, run tpaexec upgrade to perform the upgrade:

Or to run the upgrade with proxy monitoring enabled,

tpaexec upgrade will automatically run tpaexec provision , to update the ansible inventory. The upgrade process does the following:

1. Checks that all preconditions for upgrading the cluster are met.
2. For each instance in the cluster, checks that it has the correct repositories configured and that the required postgres packages are available in

them.
3. For each BDR node in the cluster, one at a time:

Fences the node off to ensure that harp-proxy doesn't send any connections to it.
Stops, updates, and restarts postgres, including replacing BDR4 with PGD5.
Unfences the node so it can receive connections again.
Updates pgbouncer and pgd-cli, as applicable for this node.

4. For each instance in the cluster, updates its BDR configuration specifically for BDR v5
5. For each proxy node in the cluster, one at a time:

Sets up pgd-proxy.
Stops harp-proxy.
Starts pgd-proxy.

6. Removes harp-proxy and its support files.

Upgrading from PGD-Always-ON to PGD-X

Upgrading a PGD-Always-ON cluster to PGD-X is a significant architectural evolution, involving changes beyond a simple software update. It is a
carefully orchestrated, multi-stage process that requires reconfiguring your cluster in distinct phases before the final software upgrade can take place.
The procedure first modernizes your PGD 5 cluster's connection handling by replacing pgd-proxy with the built-in Connection Manager –a
step that currently requires manual operations on the live cluster but is planned for automation in a future TPA release–and then transitions the cluster to
the new PGD-X architecture.

The upgrade process transitions the cluster through three distinct states:

1. Start: PGD 5.9+ (PGD-Always-ON) using PGD-Proxy

Intermediate: PGD 5.9+ (PGD-Always-ON) now using the built-in Connection Manager

$ tpaexec reconfigure
~/clusters/speedy\
 --architecture PGD-Always-ON\
 --pgd-proxy-routing local

$ tpaexec upgrade ~/clusters/speedy\

$ tpaexec upgrade ~/clusters/speedy\
 -e enable_proxy_monitoring=true

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 131

2. Intermediate: PGD 5.9+ (PGD-Always-ON) now using the built-in Connection Manager
3. Final: PGD 6 (PGD-X Architecture)

Prerequisites

Before you begin, ensure you have met the following requirements:

Cluster Version: Your cluster must be running PGD version 5.9 or later. If you are on an earlier 5.x version, use tpaexec upgrade to upgrade
to the latest minor version first. See the section (#pgd-always-on) for details on minor version upgrade of a PGD-Always-ON cluster.

Backup: You have a current, tested backup of your cluster.

Review Overrides: You have reviewed your config.yml for any instance-level proxy overrides (e.g., pgd_proxy_options). These cannot be
migrated automatically and will require manual intervention.

Co-hosted Proxies: Your PGD 5 cluster must be configured with co-hosted proxies (where the pgd-proxy role is on the same instance as the
bdr role). Standalone proxy instances are not supported by this upgrade path.

Stage 1: Migrating to the Built-in Connection Manager

The first stage is to reconfigure your PGD 5.9+ cluster to switch from using the external pgd-proxy to the modern, built-in Connection
Manager .

Transitional State Only

This process creates a transitional PGD 5.9+ cluster state that is intended only as an intermediate step before upgrading to PGD 6 . TPA
does not currently support using tpaexec upgrade on this specific Connection Manager configuration. A future TPA release will fully
support lifecycle management of PGD 5 with Connection Manager .

Significant Manual Operations Required

This stage involves significant manual intervention on your live cluster to apply the configuration changes. If you are not comfortable
performing these steps, we recommend waiting for a future TPA release that will fully automate this process.

Step 1.1: Reconfigure for Connection Manager

Run the following command to update your config.yml file. This adds the settings required to enable the built-in Connection Manager .

This action only modifies the configuration file; it does not change the running state of your database cluster yet.

Before writing the new version, reconfigure automatically saves a backup of the current file (e.g., config.yml.~1~), providing a safe restore
point.

For details of its invocation, see the command's own documentation.

$ tpaexec reconfigure ~/clusters/speedy --enable-connection-
manager

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 132

Step 1.2: Apply the Configuration and Activate Connection Manager

Apply the configuration changes to your live cluster. This is a manual operational task that involves, adding Postgres configuration parameter, stopping
the pgd-proxy service and restarting PostgreSQL nodes in a rolling fashion to activate the Connection Manager .

For the detailed, step-by-step instructions for this process, please follow the official Connection Manager Migration Guide.

Stage 1 Complete

At the end of this stage, you will have a PGD cluster running with the built-in Connection Manager . This is an intermediate state, and you should
proceed directly to Stage 2. While tpaexec upgrade for minor version upgrades is not supported in this intermediate state, we also advise agaist
running tpaexec deploy until the upgrade to PGD 6 is complete.

Stage 2: Upgrading the Architecture to PGD-X

Once your cluster is running with the Connection Manager , you can proceed with the final configuration step to prepare for the PGD 6 upgrade.

Note

You must start this process from a cluster that has successfully completed Stage 1 and is running with the built-in Connection
Manager .

Step 2.1: Reconfigure for the PGD-X Architecture

Run the following command to update your config.yml for the new architecture. This changes the cluster architecture type, sets the BDR version to
6, and removes any obsolete legacy settings.

This action only modifies the configuration file; it does not change the running state of your database cluster yet.

Step 2.2: Perform the Software Upgrade

After reviewing the final changes in config.yml , you can now run the standard tpaexec upgrade command. This will perform the software
upgrade on all nodes, bringing your cluster to PGD 6 .

Or to run the upgrade with proxy monitoring enabled,

tpaexec upgrade will automatically run tpaexec provision , to update the ansible inventory. The upgrade process does the following:

1. Checks that all preconditions for upgrading the cluster are met.
2. For each instance in the cluster, checks that it has the correct repositories configured and that the required postgres packages are available in

them.

$ tpaexec reconfigure ~/clusters/speedy --architecture PGD-
X

$ tpaexec upgrade ~/clusters/speedy

$ tpaexec upgrade ~/clusters/speedy\
 -e enable_proxy_monitoring=true

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 133

https://www.enterprisedb.com/docs/pgd/latest/upgrades/manual_overview/#pgd-5---moving-from-pgd-proxy-to-connection-manager

3. For each BDR node in the cluster, one at a time:
Fences the node off so there are no connections to it.
Stops, updates, and restarts postgres, including replacing PGD5 with PGD6.
Unfences the node so it can receive connections again.
Updates pgbouncer and pgd-cli, as applicable for this node.

4. Applies BDR configuration specifically for BDR v6

Upgrade Complete

Your cluster is now running PGD 6 with the PGD-X architecture and is fully manageable with both tpaexec deploy and tpaexec upgrade as
usual.

PGD-Always-ON

When upgrading an existing PGD-Always-ON (PGD5) cluster to the latest available software versions, the upgrade process does the following:

1. Checks that all preconditions for upgrading the cluster are met.
2. For each instance in the cluster, checks that it has the correct repositories configured and that the required postgres packages are available in

them.
3. For each BDR node in the cluster, one at a time:

Fences the node off to ensure that pgd-proxy doesn't send any connections to it.
Stops, updates, and restarts postgres.
Unfences the node so it can receive connections again.
Updates pgbouncer, pgd-proxy, and pgd-cli, as applicable for this node.

BDR-Always-ON

For BDR-Always-ON clusters, the upgrade process goes through the cluster instances one by one and does the following:

1. Tell haproxy the server is under maintenance.
2. If the instance was the active server, request pgbouncer to reconnect and wait for active sessions to be closed.
3. Stop Postgres, update packages, and restart Postgres.
4. Finally, mark the server as "ready" again to receive requests through haproxy.

PGD logical standby or physical replica instances are updated without any haproxy or pgbouncer interaction. Non-Postgres instances in the cluster are
left alone.

M1

Note

The M1 architecture only supports minor version upgrades of Postgres. All applicable failover managers for M1 can run minor version upgrades
of Postgres.

Minor upgrade of other software component will be added in a future release.

For M1 clusters, upgrade will first update the streaming replicas and witness nodes when applicable, then perform a switchover from the primary to
one of the upgraded replicas, update the primary, and switchover back to the initial primary node.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 134

Controlling the upgrade process

You can control the order in which the cluster's instances are upgraded by defining the update_hosts variable:

This may be useful to minimise lead/shadow switchovers during the upgrade by listing the active PGD primary instances last, so that the shadow servers
are upgraded first.

If your environment requires additional actions, the postgres-pre-update and postgres-post-update hooks allow you to execute custom Ansible tasks
before and after the package installation step.

Upgrading a Subset of Nodes

You can perform a rolling upgrade on a subset of instances by setting the update_hosts variable. However, support for this feature varies by
architecture.

For the M1 architecture, this feature is supported in all its upgrade scenarios.

For PGD-Always-ON/BDR-Always-ON, this is supported only during minor version upgrades.

Best Practice for PGD-Always-ON/BDR-Always-ON

When performing a minor upgrade on a subset of PGD nodes, it is highly recommended to update the RAFT leader nodes last. This strategy avoids
potential issues with post-upgrade checks while the cluster is running mixed versions of BDR.

Package version selection

By default, tpaexec upgrade will update to the latest available versions of the installed packages if you did not explicitly specify any package
versions (e.g., Postgres, PGD, or pglogical) when you created the cluster.

If you did select specific versions, for example by using any of the --xxx-package-version options (e.g., postgres, bdr, pglogical) to tpaexec
configure , or by defining xxx_package_version variables in config.yml, the upgrade will do nothing because the installed packages already
satisfy the requested versions.

In this case, you must edit config.yml, remove the version settings, and re-run tpaexec provision . The update will then install the latest available
packages. You can still update to a specific version by specifying versions on the command line as shown below:

Please note that version syntax here depends on your OS distribution and package manager. In particular, yum accepts *xyz* wildcards, while apt only
understands xyz* (as in the example above).

Note: see limitations of using wildcards in package_version in tpaexec-configure.

$ tpaexec upgrade ~/clusters/speedy \
 -e update_hosts=quirk,keeper,quaver

$ tpaexec upgrade ~/clusters/speedy -vv \
 -e postgres_package_version="2:11.6r2ndq1.6.13*" \
 -e pglogical_package_version="2:3.6.11*"
\
 -e bdr_package_version="2:3.6.11*"

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 135

It is your responsibility to ensure that the combination of Postgres, PGD, and pglogical package versions that you request are sensible. That is, they should
work together, and there should be an upgrade path from what you have installed to the new versions.

For PGD clusters, it is a good idea to explicitly specify exact versions for all three components (Postgres, PGD, pglogical) rather than rely on the package
manager's dependency resolution to select the correct dependencies.

We strongly recommend testing the upgrade in a QA environment before running it in production.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 136

25 tpaexec switchover

The tpaexec switchover command performs a controlled switchover between a primary and a replica in a cluster that uses streaming replication.
After you run this command, the selected replica is promoted to be the new primary, the former primary becomes a new replica, and any other replicas in
the cluster will be reconfigured to follow the new primary.

The command checks that the cluster is healthy before switching roles, and is designed to be run without having to shut down any repmgr services
beforehand.

(This is equivalent to running repmgr standby switchover with the --siblings-follow option.)

Example

This command will make replicaname be the new primary in ~/clusters/speedy :

Architecture options

This command is applicable only to M1 clusters that have a single writable primary instance and one or more read-only replicas.

For BDR-Always-ON clusters, use the HAProxy server pool management commands to perform maintenance on PGD instances.

Repmgr redirect pgbouncer

When using repmgr as failover manager, pgbouncer as connection pooler and setting repmgr_redirect_pgbouncer: true , switchover command
ensures that the pgbouncer instances are redirected to the new primary node.

Revert to initial primary

In case you already switched over to a different primary, you can specify revert_redirect: true on the command that will switch back
to the initial primary to make use of the initial pgbouncer config file instead of regenerating it. TPA saves the initial state of this config file as
pgbouncer.databases.ini.orig during a switchover and can revert to it when going back to the initial primary

tpaexec switchover ~/clusters/speedy
replicaname

 # switchover to a
replica
 tpaexec switchover <cluster_name> <replica_name>
 # revert to initial
primary
 tpaexec switchover <cluster_name> <initial_primary_name> -
e"revert_redirect=true"

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 137

26 BDR/HAProxy server pool management

The tpaexec pool-disable-server and pool-enable-server commands allow a PGD instance in a BDR-Always-ON cluster to be
temporarily removed from the HAProxy active server pool for maintenance, and then added back afterwards.

These commands follow the same process as rolling updates by default, so pool-disable-server will wait for active transactions against a PGD
instance to complete and for pgbouncer to direct new connections to another instance before completing. Use the --nowait option if you don't want to
wait for active sessions to end.

Running pool-disable-server immediately followed by pool-enable-server on an instance will have the effect of moving all active traffic
to a different instance (in essence, a switchover). This allows you to run online maintenace tasks such as long-running VACUUM commands, while
maintaining instance availability.

If there are multiple HAProxy servers configured with the same set of haproxy_backend_servers , this command will remove or add the given
server to the pool of every relevant proxy in parallel.

Example

When you remove an instance from the server pool, HAProxy will not direct any traffic to it, even if the other instance(s) in the pool fail. You must
remember to add the server back to the active pool once the maintenance activity is concluded.

$ tpaexec pool-disable-server ~/clusters/clockwork orange # --
nowait

HAProxy will no longer direct any traffic to the PGD instance
named
'orange', so you can perform maintenance on it (e.g., run
`tpaexec
rehydrate`).

$ tpaexec pool-enable-server ~/clusters/clockwork
orange

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 138

27 tpaexec rehydrate

The tpaexec rehydrate command rebuilds AWS EC2 instances with an updated machine image (AMI), and allows for the rapid deployment of
security patches and OS upgrades to a cluster managed by TPA.

Given a new AMI with all the required changes, this command terminates an instance, replaces it with a newly-provisioned instance that uses the new
image, and attaches the data volumes from the old instance before recreating the configuration of the server exactly (based on config.yml).

Publishing up-to-date images and requiring servers to be rebuilt from scratch on a regular schedule is an alternative to allowing a fleet of servers to
download and install individual security updates themselves. It makes it simpler to track the state of each server at a glance, and discourages any manual
changes to individual servers (they would be wiped out during the instance replacement).

TPA makes it simple to minimise disruption to the cluster as a whole during the rehydration, even though the process must necessarily involve downtime
for individual servers as they are terminated and replaced. On a streaming replication cluster, you can rehydrate the replicas first, then use tpaexec
switchover to convert the primary to a replica before rehydrating it. On BDR-Always-ON clusters, you can remove each server from the haproxy server
pool before rehydrating it, then add it back afterwards.

If you just want to install minor-version updates to Postgres and associated components, you can use the tpaexec upgrade command instead.

Prerequisites

To be able to rehydrate an instance, you must specify delete_on_termination: no and attach_existing: yes for each of its data volumes
in config.yml . (The new instance will necessarily have a new EBS root volume.)

By default, when you terminate an EC2 instance, the EBS volumes attached to it are also terminated. In this case, since we want to reattach them to a new
instance, we must disable delete_on_termination . Setting attach_existing makes TPA search for old volumes when provisioning a new
instance and, if found, attach them to the instance after it's running.

Do not stop or terminate the old instance manually; the tpaexec rehydrate command will do this after verifying that the instance can be safely
rehydrated.

Example

Let's assume you have an AWS cluster configuration in ~/clusters/night .

Change the configuration

First, you must edit config.yml and specify the new AMI. For example:

Check that delete_on_termination is disabled for each data volume. If the parameter is not present, you can check its value through the AWS EC2
management console. Click on 'Instances', select an instance, then open the 'Description' tab and scroll down to 'Block devices', and click on an EBS
volume. If the "Delete on termination" flag is set to true, you can change it using awscli . Also check attach_existing and set it to yes if it isn't
set already.

Here's an example with both attributes correctly set:

ec2_ami:
 Name: RHEL-8.3_HVM-20210209-x86_64-0-Hourly2-GP2
 Owner: '309956199498'

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 139

(Note that volume parameters may be set in instance_defaults as well as under specific instances. Search for volumes: and make sure all of
the relevant volumes have these two attributes set.)

Start the rehydration

Here's the syntax for the rehydrate command:

You can specify a single instance name or a comma-separated list of instance names (but you cannot rehydrate all of the instances in the cluster at once).

The command will first check that every non-root EBS volume attached to the instance (or instances) being rehydrated has the
delete_on_termination flag set to false. If this is not the case, it will stop with an error before any instance is terminated.

If the volume attributes are set correctly, the command will first terminate each of the instances, then run provision and deploy to replace them with new
instances using the new AMI.

Rehydrate in phases

In order to maintain cluster continuity, we recommend rehydrating the cluster in phases.

For example, in a cluster that uses streaming replication with a primary instance, two replicas, and a Barman backup server, you could rehydrate the
Barman instance and one replica first, then another replica, then switchover from the primary to one of the rehydrated replicas, rehydrate the former
primary, and (optionally), switchover back to the original primary. This sequence ensures that one primary and one replica are always available.

Appendix

Using awscli to change volume attributes

First, find the instance and EBS volume in the AWS management console. Click on 'Instances', select an instance, open the 'Description' tab and scroll
down to 'Block devices', and select an EBS volume. To disable delete_on_termination , run the following command after substituting the correct
values for the --region , --instance-id , and block device name:

instances:
- node: 1
 Name: vlad
 subnet: 10.33.14.0/24
 role: primary
 volumes:
 - device_name: /dev/xvdf
 volume_type:
gp2
 volume_size: 16
 attach_existing: yes
 delete_on_termination: false
 vars:
 volume_for: postgres_data
 mountpoint:
/var/lib/pgsql

$ tpaexec rehydrate ~/clusters/night
instancename

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 140

Do this for each of the data volumes for the instance, and after a brief delay, you should be able to see the changes in the management console, and
tpaexec rehydrate will also detect that the instance can be safely rehydrated.

$ aws ec2 modify-instance-attribute
\
 --region eu-west-1 --instance-id i-XXXXXXXXXXXXXXXXX
\
 --block-device-mappings \
 '[{"DeviceName": "/dev/xvdf", "Ebs": {"DeleteOnTermination":
false}}]'

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 141

28 TPA and Ansible Tower/Ansible Automation Platform

TPA supports deployments via RedHat Ansible Automation Platform (AAP). The support, as detailed below, works by allowing you to run deploy and
upgrade steps on AAP. Before you can run deploy or upgrades (later), you will need to run configuration (configure command) and provisioning

(provision command) on a separate standalone machine that has tpa packages installed. Once you have run configure and provision on this
standalone machine with suitable options, you can then import the resulting cluster directory on AAP. Support is limited to bare-metal platforms.

AAP initial setup

Before TPA can use AAP to deploy clusters, you need to perform this initial setup.

Add TPA Execution Environment image (admin)

Starting with version 2.4, AAP uses container images to run Ansible playbooks. These containers, called Execution Environments (EE), bundle
dependencies required by playbooks to run successfully. As a consequence, this means that in order to, resolve and use all required TPA dependencies,
you will need an EE that includes TPA so your AAP can use it when running deployments and upgrades.

Get an EE

See Build an EE for TPA for instructions on building your own image.

EDB customers can reach out to EDB Support for help with EE.

As an AAP admin, create an entry in your available EE list that points to your TPA enabled EE image.

Create the EDB_SUBSCRIPTION_TOKEN credential type (admin)

As an AAP admin, create the custom credential type EDB_SUBSCRIPTION_TOKEN to hold your EDB subscription access token:

1. Go to the Credentials Type page in the AAP UI.

2. Set the Name field to EDB_SUBSCRIPTION_TOKEN .

3. Paste the following into the Input Configuration field:

4. Paste the following into the Injector Configuration field:

5. Save the changes.

fields:
- id: tpa_edb_sub_token
 type:
string
 label: EDB_SUBSCRIPTION_TOKEN
 secret: true
required:
- tpa_edb_sub_token

env:
 EDB_SUBSCRIPTION_TOKEN: '{{ tpa_edb_sub_token
}}'

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 142

6. Create a credential using the newly added type EDB_SUBSCRIPTION_TOKEN .

Setting up a cluster

Perform the initial steps on a workstation with the tpaexec packages installed.

On the TPA workstation

Configure

Run the tpaexec configure command, including these options: --platform bare , --use-ansible-tower , --tower-git-
repository

--use-ansible-tower expects the AAP address as a parameter even if it isn't used at the time. --tower-git-repository is used to import
the cluster data into AAP. TPA creates its own branch using cluster_name as the branch name, which allows you to use the same repository for all of
your clusters. All other options to tpaexec configure , as described in Configuration, are still valid.

config.yml modification

config.yml includes the top-level dictionary ansible_tower , which causes tpaexec provision to treat the cluster as an AAP-enabled
cluster.

Edit config.yml to ensure that ansible_host and {private,public}_ip are defined for each node and ansible_host is set to a value
that AAP can resolve. Make any further changes or additions that you may need. See Cluster configuration for more details.

To generate inventory and other related files, run tpaexec provision .

On the AAP UI

Project

Add a project in AAP using the git repository as the source. Set the default EE of the project to use the TPA EE image.

Project options

To ensure changes are correctly synced before running a job, we strongly recommend using Update Revision on Launch.

Allow Branch Override is required when trying to use multiple inventories with a single project.

[tpa]$ tpaexec configure <clustername> \
 --platform bare \
 --use-ansible-tower https://aac.example.com \
 --tower-git-repository ssh://git@git.example.com/example \
 --hostnames-from <hostnamefile> \
 --architecture PGD-Always-ON \
 --pgd-proxy-routing local \
 --postgresql 16

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 143

Inventory

Add an empty inventory. Use the project as an external source to populate it using inventory/00-cluster_name as the inventory file.

Inventory options

To ensure changes are correctly synced, we strongly recommend using Overwrite local groups and hosts from remote inventory source.

We also recommend using Overwrite local variables from remote inventory source when not setting additional variables outside TPA's control in
AAP.

Credentials

Create a vault credential. You can retrieve the vault password using tpaexec show-vault <cluster_dir> on the TPA workstation.

To connect to your inventory nodes by way of SSH during deployment, make sure the machine credential is available in AAP.

Template creation

To create a template:

1. Create a template that uses your project and your inventory.

2. Include these required credentials:

Vault credential
EDB_SUBSCRIPTION_TOKEN credential

Machine credential

3. Set two additional variables:

4. Select deploy.yml as the playbook.

5. To deploy your cluster, run a job based on the new template.

Use one project for multiple inventory

TPA uses a different branch name for each of your clusters in the associated git repository. This approach allows the use of a single project for multiple
clusters.

Set Allow branch override option

In the AAP project, enable the Allow branch override option.

tpa_dir: /opt/EDB/TPA
cluster_dir: /runner/project

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 144

Define multiple inventories

TPA uses a different branch name for each of your clusters in the git repository. You can generate multiple inventories using the same project as the
source by overriding the branch for each inventory.

Define credentials per inventory

Ensure vault passwords are set accordingly per inventory since these differ on each TPA cluster.

Update TPA on AAP

Updating TPA on AAP involves some extra steps.

Update TPA workstation package

Update your TPA workstation package as any OS package depending on your OS. See Installation.

Use EE image with same version tag

Modify the EE image in AAP to use the same version tag as the workstation package version used.

Run tpaexec relink on your cluster directory

Ensure that any cluster using AAP is up to date by running tpaexec relink <cluster_dir> --force . An example of when you need to do this
is after you have upgraded your TPA installation to a new version. Be sure to push any change committed by the relink command:

Sync project and inventories

If they aren't set to use Update revision on job launch and Update on launch, sync the project in the AAP UI and related inventories, respectively.

Build an EE for TPA

$ git
status
On branch
cluster_name
Your branch is ahead of 'tower/cluster_name' by 1
commit.
 (use "git push" to publish your local commits)
...
$ git push
tower

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 145

Prerequisites

In order to build your own EE image, we recommend using ansible-builder .

You need:

1. docker or podman
2. ansible-builder and ansible-navigator python toolkits
3. TPA source code checked out at tag vA.B.C from TPA repo where vA.B.C is the TPA version you want to use.

Environment file

ansible-builder uses an environment file to help generate a working EE image.

Here is a template example of such an environment file for TPA:

execution-environment.yml

Base image

Base image used here requires access to registry.redhat.io (should be provided alongside AAP license). This image already comes with most of
the requirements for AAP 2.4 such as python 3.12.* , ansible-core==2.16.* , and ansible-runner which simplify the task.

Different base image may require more additional_build_steps . See ansible-builder for advanced usage.

EE build command

The following command should build the EE image for you:

version: 3
images:
 base_image:
 name: 'registry.redhat.io/ansible-automation-platform-24/ee-minimal-rhel9:latest'
dependencies:
 python: << TPA_REPO_CLONE_FOLDER >>/requirements-
aap.txt
 galaxy: << TPA_REPO_CLONE_FOLDER
>>/collections/requirements.yml
options:
 package_manager_path: /usr/bin/microdnf

additional_build_steps:
 append_final:
 - RUN mkdir -p
/opt/EDB/TPA
 - COPY << TPA_REPO_CLONE_FOLDER >>
/opt/EDB/TPA
 - ENV
PYTHONPATH="${PYTHONPATH:+${PYTHONPATH}:}/opt/EDB/TPA/lib"

ansible-builder build \
 --file=execution-environment.yml \
 --container-runtime=<docker/podman> \
 --tag=<your-registry>/<your-namespace>/tpa-ee:vA.B.C \
 --verbosity
2

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 146

https://github.com/EnterpriseDB/tpa
https://ansible.readthedocs.io/projects/builder/en/latest/

29 TPA, Ansible, and sudo

TPA uses Ansible with sudo to execute tasks with elevated privileges on target instances. This page explains how Ansible uses sudo (which is in no way
TPA-specific), and the consequences to systems managed with TPA.

TPA needs root privileges;

to install packages (required packages using the operating system's native package manager, and optional packages using pip)
to stop, reload and restart services (i.e Postgres, repmgr, efm, etcd, haproxy, pgbouncer etc.)
to perform a variety of other tasks (e.g., gathering cluster facts, performing switchover, setting up cluster nodes)

TPA also needs to be able to use sudo. You can make it ssh in as root directly by setting ansible_user: root , but it will still use sudo to execute
tasks as other users (e.g., postgres).

Ansible sudo invocations

When Ansible runs a task using sudo, you will see a process on the target instance that looks something like this:

/bin/bash -c 'sudo -H -S -n -u root /bin/bash -c \
 '"'"'echo BECOME-SUCCESS-kfoodiiprztsyerriqbjuqhhbemejgpc ; \
 /usr/bin/python2'"'"' && sleep 0'

People who were expecting something like sudo yum install -y xyzpkg are often surprised by this. By and large, most tasks in Ansible will
invoke a Python interpreter to execute Python code, rather than executing recognisable shell commands. (Playbooks may execute raw shell commands,
but TPA uses such tasks only to bootstrap a Python interpreter.)

Ansible modules contain Python code of varying complexity, and an Ansible playbook is not just a shell script written in YAML format. There is no way to
“extract” shell commands that would do the same thing as executing an arbitrary Ansible playbook.

There is one significant consequence of how Ansible uses sudo: privilege escalation must be general. That, it is not possible to limit sudo invocations to
specific commands in sudoers.conf, as some administrators are used to doing. Most tasks will just invoke python. You could have restricted sudo access to
python if it were not for the random string in every command—but once Python is running as root, there's no effective limit on what it can do anyway.

Executing Python modules on target hosts is just the way Ansible works. None of this is specific to TPA in any way, and these considerations would apply
equally to any other Ansible playbook.

Recommendations

Use SSH public key-based authentication to access target instances.

Allow the SSH user to execute sudo commands without a password.

Restrict access by time, rather than by command.

TPA needs access only when you are first setting up your cluster or running tpaexec deploy again to make configuration changes, e.g., during a
maintenance window. Until then, you can disable its access entirely (a one-line change for both ssh and sudo).

During deployment, everything Ansible does is generally predictable based on what the playbooks are doing and what parameters you provide, and each
action is visible in the system logs on the target instances, as well as the Ansible log on the machine where tpaexec itself runs.

Ansible's focus is less to impose fine-grained restrictions on what actions may be executed and more to provide visibility into what it does as it executes,
so elevated privileges are better assigned and managed by time rather than by scope.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 147

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_privilege_escalation.html#privilege-escalation-must-be-general

SSH and sudo passwords

We strongly recommend setting up password-less SSH key authentication and password-less sudo access, but it is possible to use passwords too.

If you set ANSIBLE_ASK_PASS=yes and ANSIBLE_BECOME_ASK_PASS=yes in your environment before running tpaexec, Ansible will prompt you
to enter a login password and a sudo password for the remote servers. It will then negotiate the login/sudo password prompt on the remote server and
send the password you specify (which will make your playbooks take noticeably longer to run).

We do not recommend this mode of operation because we feel it is a more effective security control to completely disable access through a particular
account when not needed than to use a combination of passwords to restrict access. Using public key authentication for ssh provides an effective control
over who can access the server, and it's easier to protect a single private key per authorised user than it is to protect a shared password or multiple shared
passwords. Also, if you limit access at the ssh/sudo level to when it is required, the passwords do not add any extra security during your maintenance
window.

sudo options

To use Ansible with sudo, you must not set requiretty in sudoers.conf.

If needed, you can change the sudo options that Ansible uses (-H -S -n) by setting become_flags in the [privilege_escalation] section
of ansible.cfg, or ANSIBLE_BECOME_FLAGS in the environment, or ansible_become_flags in the inventory. All three methods are equivalent,
but please change the sudo options only if there is a specific need to do so. The defaults were chosen for good reasons. For example, removing -S -n
will cause tasks to timeout if password-less sudo is incorrectly configured.

Logging

For playbook executions, the sudo logs will show mostly invocations of Python (just as it will show only an invocation of bash when someone uses sudo
-i).

For more detail, the syslog will show the exact arguments to each module invocation on the target instance. For a higher-level view of why that module
was invoked, the ansible.log on the controller shows what that task was trying to do, and the result.

If you want even more detail, or an independent source of audit data, you can run auditd on the server and use the SELinux log files. You can get still more
fine-grained syscall-level information from bpftrace/bcc (e.g., opensnoop shows every file opened on the system, and execsnoop shows every process
executed on the system). You can do any or all of these things, depending on your needs, with the obvious caveat of increasing overhead with increased
logging.

Local privileges

The installation instructions for TPA mention sudo only as shorthand for “run these commands as root somehow”. Once TPA is installed and you have run
tpaexec setup , TPA itself does not require elevated privileges on the local machine. (But if you use Docker, you must run tpaexec as a user that

belongs to a group that is permitted to connect to the Docker daemon.)

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 148

30 TPA - PuTTY Configuration guide

In order to use PuTTY under Windows to connect via ssh to the AWS instances that were created by the TPA utility tpaexec provision, the keys will need to
be converted from the private key format (.pem) generated by Amazon EC2 to the PuTTY format (.ppk).

Provision the cluster
[tpa]$ tpaexec provision <clustername>

PuTTY has a tool named PuTTYgen, which can convert keys to the required format.

Key conversion

Locate private key

Locate the private key in the cluster directory <clustername> - it will be named according to the cluster_name variable set in config.yml prefixed by
id_ - e.g. if the cluster_name is set to testenv1, then the private key will be called id_testenv1.

Save key as .pem

Copy this file into your Windows filesystem & save it as a .pem file - in this example id_testenv1.pem - cut and pasting into a text file will work fine for this.

Key conversion

Start PuTTYgen and under Parameters, select appropriate Type of key to generate:

For older versions of PuTTYgen, select SSH-2 RSA; for recent versions selectRSA

Do not select SSH-1 (RSA)

Now choose Load - in the box that says PuTTY Private Key Files (*.ppk) you will need to select All Files (*.*)

Select your .pem file and choose Open, then click OK.

Select Save private key and click Yes to ignore the warning about saving the key without a passphrase. Make sure that the file suffix is .ppk and choose the
same name as for the .pem file; in this example the filename might be id_testenv1.ppk

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 149

Configure PuTTY

Start PuTTY and select Session from the Category window. In the Host Name panel, enter <user>@<IP address> and in the Port Panel, enter 22

The <user> and <IP address> can be found in the <clustername>/ssh_config file which gets created by the tpaexec provision
utility.

In the Putty Category window, Select Connection, expand SSH and select Auth

For the panel marked Private key file for authentication, click Browse and select the .ppk file that was saved above, then select Open

In the Putty Category window, select Session again, enter a session name in Saved Sessions, and Save

You should now be able to connect to the AWS host via PuTTY by selecting this saved session.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 150

31 Troubleshooting

Recreate python virtual environment

Occasionally the python venv can get in an inconsistent state, in which case the easiest solution is to delete and recreate it. Symptoms of a broken venv
can include errors during provisioning like:

TASK [Write Vagrantfile and firstboot.sh]
**

failed: [localhost] (item=Vagrantfile) => {"changed": false, "checksum":
"bf1403a17d897b68fa8137784d298d4da36fb7f9", "item": "Vagrantfile", "msg": "Aborting, target uses selinux
but python bindings (libselinux-python) aren't installed!"}

To create a new virtual environment (assuming tpaexec was installed into the default location):

[tpa]$ sudo rm -rf /opt/EDB/TPA/tpa-venv
[tpa]$ sudo /opt/EDB/TPA/bin/tpaexec setup

Strange AWS errors regarding credentials

If the time & date of the TPA server isn't correct, you can get AWS errors similar to this during provisioning:

TASK [Register key tpa_cluster in each region] **
An exception occurred during task execution. To see the full traceback, use -vvv. The error was:
ClientError: An error occurred (AuthFailure) when calling the DescribeKeyPairs operation: AWS was not able
to validate the provided access credentials
failed: [localhost] (item=eu-central-1) => {"boto3_version": "1.8.8", "botocore_version": "1.11.8",
"changed": false, "error": {"code": "AuthFailure", "message": "AWS was not able to validate the provided
access credentials"}, "item": "eu-central-1", "msg": "error finding keypair: An error occurred
(AuthFailure) when calling the DescribeKeyPairs operation: AWS was not able to validate the provided
access credentials", "response_metadata": {"http_headers": {"date": "Thu, 27 Sep 2018 12:49:41 GMT",
"server": "AmazonEC2", "transfer-encoding": "chunked"}, "http_status_code": 401, "request_id": "a0d905ba-
188f-48fe-8e5a-c8d8799e3232", "retry_attempts": 0}}

Solution - set the time and date correctly.

[tpa]$ sudo ntpdate pool.ntp.org

Logging

By default, all tpaexec logging will be saved in logfile <clusterdir>/ansible.log

To change the logfile location, set environment variable ANSIBLE_LOG_PATH to the desired location - e.g.

export ANSIBLE_LOG_PATH=~/ansible.log

To increase the verbosity of logging, just add -v / -vv / -vvv / -vvvv / -vvvvv to tpaexec command line:

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 151

[tpa]$ tpaexec deploy <clustername> -v

-v shows the results of modules
-vv shows the files from which tasks come
-vvv shows what commands are being executed on the target machines
-vvvv enables connection debugging, what callbacks have been loaded
-vvvvv shows some additional ssh configuration, filepath information

Cluster test

An easy way to smoketest an existing cluster is to run:

[tpa]$ tpaexec test <clustername>

This will do a functional test of the cluster components, followed by a performance test of the cluster, using pgbench. As pgbench can take a while to
complete, benchmarking can be omitted by running:

[tpa]$ tpaexec test <clustername> --excluded_tasks=pgbench

TPA server test

To check the installation of the TPA server itself, run:

[tpa]$ tpaexec selftest

Including or excluding specific tasks

When re-running a tpaexec provision or deploy after a failure or when running tests, it can sometimes be useful to miss out tasks using TPA's task
selection mechanism.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 152

32 Selective task execution

Using task selectors

You can tell TPA to run only a subset of the tasks that constitute a full deployment using the --excluded_tasks and --included_tasks options
to tpaexec deploy . Each of these arguments is a string treated as a comma-separated list of selectors. Equivalently, you can set the
excluded_tasks and included_tasks variables in config.yml , either for the whole cluster or for the separate instances. In config.yml ,

you can use either a comma-separated string or a yaml list.

Tasks matched by excluded_tasks are always excluded. If you specify included_tasks , then non-matching tasks are implicitly excluded.

Some selectors may be used in either list, and some only in the excluded_tasks list, as detailed below. A separate set of selectors is available for
tpaexec test .

Examples

To deploy without running barman-related tasks:

[tpa]$ tpaexec deploy <clustername> --excluded_tasks=barman

To deploy running only repmgr-related tasks:

[tpa]$ tpaexec deploy <clustername> --included_tasks=repmgr

To deploy without trying to set hostnames on the instances:

[tpa]$ tpaexec deploy <clustername> --excluded_tasks=hostname

To prevent bootstrap and ssh tasks from ever running, put the following into config.yml :

Supported selectors for tpaexec deploy

The following selectors are supported for either inclusion or exclusion:

barman

Tasks related to Barman.

bdr

Tasks related to setting up BDR, including when it is as used within a PGD cluster. If this selector is excluded, TPA will still install and configure the
extension as specified in config.yml, but won't create the node groups or try to join the nodes.

 cluster_vars:
 excluded_tasks:
 - bootstrap
 -
ssh

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 153

create_pgd_proxy_system_user

Tasks which creates the system user for pgd_proxy

create_postgres_system_user

Tasks which creates the system user for postgres

efm

Tasks related to EFM.

etcd

Tasks related to etcd.

first-backup

Tasks which ensure the minimum number of barman backups exist.

haproxy

Tasks related to haproxy.

harp

Tasks related to harp.

patroni

Tasks related to patroni.

pem-agent

Tasks related to the PEM agent.

pem-server

Tasks related to the PEM server.

pem-webserver

Tasks related to configuring the web server on a PEM server.

pg-backup-api

Tasks related to Barman's Postgres backup API.

pgbouncer

Tasks related to PgBouncer.

pgd-proxy

Tasks related to PGD Proxy.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 154

pglogical

Tasks related to pglogical.

pkg

Tasks which install packages using the system package manager.

post-deploy

The post-deploy hook, if one is defined.

postgres

Tasks related to postgres.

replica

Tasks which are run and instances acting as postgres replicas.

repmgr

Tasks related to repmgr.

restart

Tasks which restart services

sys

Tasks related to system setup before any tasks specific to postgres or related software.

zabbix-agent

Tasks related to the zabbix agent.

The following selectors are supported only for exclusion:

artifacts

Tasks related to artifacts.

barman-clean

Tasks which clean up the Barman build directory if Barman is being built from source.

barman-pre-config

The barman-pre-config hook, if one is defined.

bdr-pre-node-creation

The bdr-pre-node-creation hook, if one is defined.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 155

bdr-post-group-creation

The bdr-post-group-creation hook, if one is defined.

bdr-pre-group-join

The bdr-pre-group-join hook, if one is defined.

bootstrap

Tasks which ensure that python and other minimal dependencies are present before the rest of the deploy runs. Exclude this only if you are sure
you have manually installed the relevant requirements.

build-clean

Tasks which clean up build directories for any software that is being built from source.

build-configure

Tasks which configure any software that is being built from source.

cloudinit

Tasks which are run only on hosts managed by cloud-init.

commit-scopes

Tasks related to configuration of BDR commit scopes.

config

Tasks which create config files.

efm-pre-config

The efm-pre-config hook, if one is defined.

fs

Tasks related to setting up additional volumes on instances.

hostkeys

Tasks which set up ssh host keys.

hostname

Tasks which set the hostname.

hosts

Tasks which add entries to /etc/hosts

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 156

initdb

Tasks which run initdb.

local-repo

Tasks which set up local package repositories.

locale

Tasks which install locale support.

openvpn

Tasks which set up OpenVPN.

pg-backup-api-clean

Tasks which clean up the build directory if the Postgres backup API is being built from source.

pgbouncer-config

Tasks which create configuration files for pgbouncer.

pgpass

Tasks which create the .pgpass file.

post-repo

The post-repo hook, if one is defined.

postgres-clean

Tasks which clean up the build directory if postgres is being built from source.

postgres-config

The postgres-config hook, if one is defined.

postgres-config-final

The postgres-config-final hook, if one is defined.

pre-deploy

The pre-deploy hook, if one is defined.

pre-initdb

The pre-initdb hook, if one is defined.

replication-sets

Tasks related to witness-only replication sets on a BDR3 cluster.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 157

repmgr-clean

Tasks which clean up the build directory if repmgr is being built from source.

repmgr-configure

Tasks which configure repmgr if it is being built from source.

repo

Tasks which set up package repositories.

rsyslog

Tasks related to rsyslog.

service

Tasks related to system services, including configuration and restarting.

src

Tasks which build and install packages from source.

ssh

Tasks related to setting up ssh between instances.

sysctl

Tasks which set and reload sysctl settings.

sysstat

Tasks releated to the sysstat service.

tpa

Tasks related to TPA's own files installed on instances.

user

Tasks related to setting up system users.

watchdog

Tasks related to the kernel watchdog on a patroni cluster.

Supported selectors for tpaexec test

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 158

Supported selectors for tpaexec test

The following selectors apply only for execution of tpaexec test :

camo

Tasks related to testing CAMO in a BDR or PGD cluster.

ddl

Tasks related to testing DDL in a BDR or PGD cluster.

fail

Tasks which abort tests if a problem is detected. Exclude this selector to run tests regardless of failures.

pgbench

Tasks which run pgbench.

sys

Tasks which run system-level tests.

barman, bdr, haproxy, pg-backup-api, pgbouncer, pgd-proxy, postgres, repmgr,

Tasks which test the various software components.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 159

33 Running TPA in a Docker container

If you are using a system for which there are no TPA packages available, and it's difficult to run TPA after installing from source (for example, because it's
not easy to obtain a working Python 3.12+ interpreter), your last resort may be to build a Docker image and run TPA inside a Docker container.

Please note that you do not need to run TPA in a Docker container in order to deploy to Docker containers. It's always preferable to run TPA directly if you
can (even on MacOS X).

Quickstart

You must have Docker installed and working on your system already.

Run the following commands to clone the tpaexec source repository from Github and build a new Docker image named tpa/tpaexec :

Double-check the created image:

Then you need to setup an alias for tpaexec on the shell session you are running:

alias tpaexec="docker run --rm -v $PWD:/work -v /var/run/docker.sock:/var/run/docker.sock tpaexec"

Now you can run commands like:

$ tpaexec configure cluster -a M1 --postgresql 15 --failover-manager patroni --platform docker
$ tpaexec deploy cluster

$ git clone
ssh://git@github.com/EnterpriseDB/tpa.git
$ cd
tpa
$ docker build -f docker/Dockerfile --build-arg TPA_VER=$(git describe) -t tpaexec:latest
.

$ docker image ls
tpaexec
REPOSITORY TAG IMAGE ID CREATED
SIZE
tpaexec latest 3943dec4d660 20 minutes ago
658MB

$ docker run --rm tpaexec
info
TPAexec v23.38.0-38-g4dc030dc1
tpaexec=/usr/local/bin/tpaexec
TPA_DIR=/opt/EDB/TPA
PYTHON=/opt/EDB/TPA/tpa-venv/bin/python3 (v3.13.5, venv)
TPA_VENV=/opt/EDB/TPA/tpa-venv
ANSIBLE=/opt/EDB/TPA/tpa-venv/bin/ansible (v2.16.14)

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 160

Installing Docker

Please consult the Docker documentation if you need help to install Docker and get started with it.

On MacOS X, you can install "Docker Desktop for Mac" and launch Docker from the application menu.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 161

https://docs.docker.com/
https://docs.docker.com/install
https://docs.docker.com/get-started/
https://hub.docker.com/editions/community/docker-ce-desktop-mac/

33.1 Managing clusters in a disconnected or air-gapped environment

In a security controlled environment where no direct connection to the Internet is allowed, it is necessary to provide all packages needed by TPA to
complete the deployment. This can be done via a local-repo on each node in the cluster. TPA supports the addition of custom repositories on each node via
a local-repo and the required packages can be downloaded using the download-packages command.

Preparation

Choose an internet connected machine where you can install TPA and follow the instructions below to either copy an existing cluster configuration or
create a new cluster.

Note

If the air-gapped server does not already have TPA installed, follow the instructions here to install it.

If you have an existing cluster in a disconnected environment, all you need on the internet connected host is the config.yml. Create a directory and copy
that file into it then run tpaexec relink on that directory to generate the remaining files that would normally be created by tpaexec
configure .

Alternatively, to create a new configuration for an environment where the target instances will not have network access, configure a new cluster with this
option:

tpaexec configure --use-local-repo-only …

This will do everything that --enable-local-repo does, and disable the configuration for all other package repositories. On RedHat instances, this
also includes disabling access to subscription-based services.

In an existing cluster, you can set use_local_repo_only: yes in config.yml :

Note: that you do not need separate cluster configurations for internet connected and disconnected environments, the options below work in both.

More info on using local-repo for distributing packages

Downloading packages

On the internet connected machine, ensure that you have docker installed and run:

tpaexec download-packages cluster-dir --os <OS> --os-version <version>

See detailed description for the package downloader.

cluster_vars:
 use_local_repo_only: yes

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 162

Copying packages to the target environment

The resulting repository will be contained in the cluster-dir/local-repo directory. This is a complete package repo for the target OS. Copy this
directory, from the connected controller to the disconnected controller that will be used to deploy the cluster. Place the directory in the same place,
beneath the cluster directory. TPA will then copy packages to the instances automatically when deploy is run.

Deploying in a disconnected environment

Ensure that the cluster config.yml has been configured as above in Preparation. Run tpaexec provision and deploy as you would normally.

Updating in a disconnected environment

You can use the upgrade command to perform updates in an air-gapped environment. Prior to running this command you must run download-
packages on the connected controller and copy the updated repository to the disconnected controller.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 163

33.2 Distribution support

TPA detects and adapts to the distribution running on each target instance. This page lists platforms which are actively supported and 'legacy distribution'
which have previously been supported. Deploying to a legacy platform is likely to work as long as you have access to the necessary packages, but this is
not considered a supported use of TPA and is not suitable for production use.

Fully supported platforms are supported both as host systems for running TPA and target systems on which TPA deploys the Postgres cluster.

Debian ARM64

Debian 12/bookworm is fully supported

Debian x86

Debian 12/bookworm is fully supported
Debian 11/bullseye is fully supported
Debian 10/buster is a legacy distribution
Debian 9/stretch is a legacy distribution
Debian 8/jessie is a legacy distribution

Ubuntu x86

Ubuntu 24.04/noble is fully supported
Ubuntu 22.04/jammy is fully supported
Ubuntu 20.04/focal is a legacy distribution
Ubuntu 18.04/bionic is a legacy distribution
Ubuntu 16.04/xenial is a legacy distribution

Oracle Linux x86

Oracle Linux 9.x is fully supported (docker only)
Oracle Linux 8.x is fully supported (docker only)
Oracle Linux 7.x is a legacy distribution (docker only)

RedHat x86

RHEL/Rocky/AlmaLinux/Oracle Linux 9.x is fully supported (python3 only)
RHEL/CentOS/Rocky/AlmaLinux 8.x is fully supported (python3 only)
RHEL/CentOS 7.x is a legacy distribution (python2 only)

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 164

RedHat ppc64le

RHEL/Rocky/AlmaLinux 9.x is fully supported (python3 only)
RHEL/AlmaLinux 8.x is fully supported (python3 only)

SLES x86

SLES 15.x is fully supported

Platform-specific considerations

Some platforms may not work with the legacy distributions mentioned here. For example, Debian 8 and Ubuntu 16.04 are not available in Docker
containers.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 165

33.3 TPA capabilities and supported software

Python requirements
Supported distributions

Supported software

TPA can install and configure the following major components.

Postgres

EPAS (EDB Postgres Advanced Server)

PGD 5, 4, 3.7

pglogical 3, 2 (open source)

pgd-cli and pgd-proxy

HARP 2

repmgr

Barman

pgbouncer

haproxy (supported only for PGD 3.7)

Failover Manager (EFM)

Postgres Enterprise Manager (PEM)

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 166

33.4 Reconciling changes made outside of TPA

Any changes made to a TPA created cluster that are not performed by changing the TPA configuration will not be saved in config.yml . This means
that your cluster will have changes that the TPA configuration won't be able to recreate.

This page shows how configuration is managed with TPA and the preferred ways to make configuration changes. We then look at strategies to make, and
reconcile, the results of making manual changes to the cluster.

Why might I need to make manual configuration changes?

The most common scenario in which you may need to make configuration changes outside of TPA is if the operation you are performing is not supported
by TPA. The two most common such operations are destructive changes, such as removing a node, and upgrading the major version of Postgres.

Destructive changes

In general TPA will not remove previously deployed elements of a cluster, even if these are removed from config.yml . This sometimes surprises
people because a strictly declarative system should always mutate the deployed artifacts to match the declaration. However, making destructive changes
to production database can have serious consequences so it is something we have chosen not to support.

Major-version Postgres upgrades

TPA does not yet provide an automated mechanism for performing major version upgrades of Postgres. Therefore if you need to perform an in-place
upgrade on an existing cluster this must be performed using other tools such as pg_upgrade or bdr_pg_upgrade.

What can happen if changes are not reconciled?

A general issue with unreconciled changes is that if you deploy a new cluster using your existing config.yml , or provide your config.yml to EDB
Support in order to reproduce a problem, it will not match the original cluster. In addition, there is potential for operational problems should you wish to
use TPA to manage that cluster in future.

The operational impact of unreconciled changes varies depending on the nature of the changes. In particular whether the change is destructive, and
whether the change blocks TPA from running by causing an error or invalidating the data in config.yml .

Non-destructive, non-blocking changes

Additive changes are often accommodated with no immediate operational issues. Consider manually adding a user. The new user will continue to exist
and cause no issues with TPA at all. You may prefer to manage the user through TPA in which case you can declare it in config.yml but the existence
of a manually-added user will cause no operational issues.

Some manual additions can have more nuanced effects. Take the example of an extension which has been manually added. Because TPA does not make
destructive changes, the extension will not be removed when tpaexec deploy is next run. However, if you made any changes to the Postgres
configuration to accommodate the new extension these may be overwritten if you did not make them using one of TPA's supported mechanisms (see
below).

Furthermore, TPA will not make any attempt to modify the config.yml file to reflect manual changes and the new extension will be omitted from
tpaexec upgrade which could lead to incompatible software versions existing on the cluster.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 167

https://www.enterprisedb.com/docs/pgd/latest/upgrades/bdr_pg_upgrade/#bdr_pg_upgrade-command-line

Destructive, non-blocking changes

Destructive changes that are easily detected and do not block TPA's operation will simply be undone when tpaexec deploy is next run. Consider
manually removing an extension. From the perspective of TPA, this situation is indistinguishable from the user adding an extension to the config.yml
file and running deploy. As such, TPA will add the extension such that the cluster and the config.yml are reconciled, albeit in the opposite way to that
the user intended.

Similarly, changes made manually to configuration parameters will be undone unless they are:

1. Made in the conf.d/9999-override.conf file reserved for manual edits;
2. Made using ALTER SYSTEM SQL; or
3. Made natively in TPA by adding postgres_conf_settings .

Other than the fact that option 3 is self-documenting and portable, there is no pressing operational reason to reconcile changes made by method 1 or 2.

Destructive, blocking changes

Changes which create a more fundamental mismatch between config.yml can block TPA from performing operations. For example if you physically
remove a node in a bare metal cluster, attempts by TPA to connect to that node will fail, meaning most TPA operations will exit with an error and you will
be unable to manage the cluster with TPA until you reconcile this difference.

How to reconcile configuration changes

In general, the reconciliation process involves modifying config.yml such that it describes the current state of the cluster and then running
tpaexec deploy .

Example: parting a PGD node

Deploy a minimal PGD cluster using the bare architecture and a configure command such as:

Part a node using this SQL, which can be executed from any node:

select * from bdr.part_node('node-2');

Rerun deploy . Note that, whilst no errors occur, the node is still parted. This can be verified using the command pgd show-nodes on any of the
nodes. This is because TPA will not overwrite the metadata which tells PGD the node is parted.

Note

It is not possible to reconcile the config.yml with this cluster state because TPA, and indeed PGD itself, has no mechanism to initiate a
node in the 'parted' state. In principle you could continue to use TPA to continue this parted cluster, but this is not advisable. In most cases you
will wish to continue to fully remove the node and reconcile config.yaml .

tpaexec configure mycluster \
-a PGD-Always-ON \
--platform bare \
--edbpge 15 \
--location-names a
\
--pgd-proxy-routing local

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 168

Example: removing a PGD node completely

The previous example parted a node from the PGD cluster, but left the node itself intact and still managed by TPA in a viable but unreconcilable state.

To completely decommission the node, it is safe to simply turn off the server corresponding to node-2 . If you attempt to run deploy at this stage, it
will fail early when it cannot reach the server.

To reconcile this change in config.yml simply delete the entry under instances corresponding to node-2 . It will look something like this:

You can now manage this node as usual using TPA. The original cluster still has metadata that refers to node-2 as a node whose state is PARTED ,
which is not removed by default as it does not affect cluster functionality.

Note

If you wish to join the original node-2 back to the cluster after having removed it from config.yml , you can do so by restoring the deleted
lines of config.yml , stopping Postgres, deleting the PGDATA directory on that node, and then repeating tpaexec deploy . As noted
above, TPA will not remove an existing database, even if the corresponding entry is deleted from config.yml , so you need to perform this
action manually.

Example: changing the superuser password

TPA automatically generates a password for the superuser which you may view using tpaexec show-password <cluster> <superuser-
name> . If you change the password manually (for example using the /password command in psql) you will find that after tpaexec deploy is next
run, the password has reverted to the one set by TPA. To make the change through TPA, and therefore make it persist across runs of tpaexec deploy ,
you must use the command tpaexec store-password <cluster> <superuser-name> to specify the password, then run tpaexec
deploy . This also applies to any other user created through TPA.

Example: adding or removing an extension

A simple single-node cluster can be deployed with the following config.yml .

- Name: node-2
 public_ip: 44.201.93.236
 private_ip: 172.31.71.186
 location:
a
 node: 2
 role:
 -
bdr
 - pgd-proxy
 vars:
 bdr_child_group: a_subgroup
 bdr_node_options:
 route_priority: 100

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 169

You may manually add the pgvector extension by connecting to the node and running apt install postgresql-15-pgvector then executing
the following SQL command: CREATE EXTENSION vector; . This will not cause any operational issues, beyond the fact that config.yml no
longer describes the cluster as fully as it did previously. However, it is advisable to reconcile config.yml (or indeed simply use TPA to add the
extension in the first place) by adding the following cluster variables.

After adding this configuration, you may manually remove the extension by executing the SQL command DROP EXTENSION vector; and then apt
remove postgresql-15-pgvector . However if you run tpaexec deploy again without reconciling config.yml , the extension will be
reinstalled. To reconcile config.yml , simply remove the lines added previously.

Note

As noted previously, TPA will not honour destructive changes. So simply removing the lines from config.yml will not remove the extension.
It is necessary to perform this operation manually then reconcile the change.

architecture: M1
cluster_name: singlenode

cluster_vars:
 postgres_flavour: postgresql
 postgres_version: '15'
 preferred_python_version: python3

instance_defaults:
 image: tpa/debian:11
 platform:
docker
 vars:
 ansible_user: root

instances:
- Name: nodeone
 node: 1
 role:
 - primary

cluster_vars:
 ...
 extra_postgres_packages:
 common:
 - postgresql-15-
pgvector
 extra_postgres_extensions:
 -
vector

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 170

33.5 EDB Postgres Distributed configuration

TPA can install and configure EDB Postgres Distributed (PGD), formerly known as BDR (Bi-directional replication) versions 3.7, 4.x, and 5.x.

Access to PGD packages is through EDB's package repositories only. You must have a valid EDB subscription token to download the packages.

This documentation touches on several aspects of PGD configuration, but we refer you to the PGD documentation for an authoritative description of the
details.

Introduction

TPA will install PGD and any dependencies on all PGD instances along with Postgres itself.

After completing the basic Postgres setup and starting Postgres, TPA will then create the bdr_database and proceed to set up a PGD cluster through
the various steps described below.

Installation

TPA will install the correct PGD packages, depending on the version and flavour of Postgres in use (e.g., Postgres, Postgres Extended, or EPAS).

Set bdr_version to determine which major version of PGD to install (i.e., 3, 4, 5). Set bdr_package_version to determine which exact package
to install (e.g., '5.0*' to install the latest 5.0.x).

Overview of cluster setup

After installing the required packages, configuring Postgres to load PGD, and starting the server, TPA will go on to set up PGD nodes, groups, replication
sets, and other resources.

Here's a summary of the steps TPA performs:

Create a PGD node (using bdr.create_node()) for each participating instance

Create one or more PGD node groups (using bdr.create_node_group()) depending on bdr_node_groups

Create replication sets, if required, to control exactly which changes are replicated (depending on node group type and memberships, e.g.,
subscriber-only and witness nodes may need special handling)

Join the relevant node groups on the individual instances

Perform additional configuration, such as enabling subgroup RAFT or proxy routing.

(This process involves executing a complex sequence of queries, some on each instance in turn, and others in parallel. To make the steps easier to follow,
TPA designates an arbitrary PGD primary instance as the "first_bdr_primary" for the cluster, and uses this instance to execute most of these queries. The
instance is otherwise not special, and its identity is not significant to the PGD configuration itself.)

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 171

https://enterprisedb.com/docs/pgd/latest/

Instance roles

Every instance with bdr in its role is a PGD instance, and implicitly also a postgres server instance.

A PGD instance with readonly in its role is a logical standby node (which joins the PGD node group with pause_in_standby set), eligible for
promotion.

A PGD instance with subscriber-only in its role is a subscriber-only node, which receives replicated changes but does not publish them.

A PGD instance with witness in its role is a witness node.

Every PGD instance described above is implicitly also a primary instance. The exception is an instance with replica in its role; that indicates a
physical streaming replica of an upstream PGD instance. Such instances are not included in any recommended PGD architecture, and not currently
supported by TPA.

Configuration settings

The settings mentioned below should ordinarily be set in cluster_vars , so that they are set uniformly for all the PGD instances in the cluster. You can
set different values on different instances in some cases (e.g., bdr_database), but in other cases, the result is undefined (e.g., all instances must have
exactly the same value of bdr_node_groups).

We strongly recommend defining your PGD configuration by setting uniform values for the whole cluster under cluster_vars .

bdr_database

The bdr_database (default: bdrdb) will be initialised with PGD.

bdr_client_dsn_attributes

Any additional parameter keywords supported by libpq can be included in bdr_client_dsn_attributes .

Do not include host , port , dbname and user , as these will already be included in the connection string.

When pgd-proxy and pgd-cli are installed

Since pgd-proxy and pgd-cli are written in Go, they use Go drivers for connecting to Postgres.

These drivers do not support the full set of DSN attributes provided by the libpq C library.

If pgd-proxy and/or pgd-cli are installed and bdr_client_dsn_attributes includes parameters that are unsupported by the Go driver
(such as timeout), two new variables must be included in the cluster configuration:

pgd_proxy_dsn_attributes , which is used to create the connection strings in pgd-proxy-conf
pgd_cli_dsn_attributes , which is used to create the connection strings in pgd-cli-conf

These two strings must ONLY contain parameter keywords compatible with the Go driver.

If the bdr_client_dsn_attributes does not include any unsupported parameters, this can be ignored and the
bdr_client_dsn_attributes will be included in the connection strings for pgd-proxy-conf and pgd-cli-conf .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 172

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS

bdr_node_group

The setting of bdr_node_group (default: based on the cluster name) identifies which PGD cluster an instance should be a part of. It is also used to
identify a particular cluster for external components (e.g., pgd-proxy or harp-proxy).

bdr_node_groups

This is a list of PGD node groups that must be created before the group join stage (if the cluster requires additional subgroups).

In general, tpaexec configure will generate an appropriate value based on the selected architecture.

The first entry must be for the cluster's bdr_node_group .

Each subsequent entry in the list must specify a parent_group_name , and may specify the node_group_type (optional).

Each entry may also have an optional key/value mapping of group options. The available options vary by PGD version.

bdr_child_group

If bdr_child_group is set for an instance (to the name of a group that is mentioned in bdr_node_groups), it will join that group instead of
bdr_node_group .

bdr_commit_scopes

This is an optional list of commit scopes that must exist in the PGD database (available for PGD 4.1 and above).

Each entry must specify the name of the commit scope, the name of the origin group, and the commit scope rule . The groups must correspond to

cluster_vars:
 bdr_node_groups:
 - name:
topgroup
 - name: abc_subgroup
 node_group_type: data
 parent_group_name:
topgroup
 options:
 location:
abc

…

cluster_vars:
 bdr_commit_scopes:
 - name: somescope
 origin: somegroup
 rule: 'ALL (somegroup) ON received …
`
 - name:
otherscope
 origin: othergroup
 rule:
'…'

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 173

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/

Each entry must specify the name of the commit scope, the name of the origin group, and the commit scope rule . The groups must correspond to
entries in bdr_node_groups .

If you set bdr_commit_scopes explicitly, TPA will create, alter, or drop commit scopes as needed to ensure that the database matches the
configuration. If you do not set it, it will leave existing commit scopes alone.

Miscellaneous notes

Hooks

TPA invokes the bdr-node-pre-creation, bdr-post-group-creation, and bdr-pre-group-join hooks during the PGD cluster setup process.

Database collations

TPA checks that the PGD database on every instance in a cluster has the same collation (LC_COLLATE) setting. Having different collations in databases in
the same PGD cluster is a data loss risk.

Older versions of PGD

TPA no longer actively supports or tests the deployment of BDR v1 (with a patched version of Postgres 9.4), v2 (with Postgres 9.6), or any PGD versions
below v3.7.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 174

33.6 Barman

When an instance is given the barman role in config.yml, TPA will configure it as a Barman server to take backups of any other instances that name it in
their backup setting.

Multiple postgres instances can have the same Barman server named as their backup ; equally, one postgres instance can have a list of Barman
servers named as its backup and backups will be taken to all of the named servers.

The default Barman configuration will connect to PostgreSQL using pg_receivewal to take continuous backups of WAL, and will take a full backup of the
instance using rsync over ssh twice weekly. Full backups and WAL are retained for long enough to enable recovery to any point in the last 4 weeks.

Barman package version

By default, TPA installs the latest available version of Barman.

The version of the Barman package that is installed can be specified by including barman_package_version: xxx under the cluster_vars
section of the config.yml file.

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

Barman configuration

The Barman home directory on the Barman server can be set using the cluster variable barman_home ; its default value is /var/lib/barman .

On each Barman server, a global configuration file is created as /etc/barman.conf . This file contains default values for many Barman configuration
variables. For each Postgres server being backed up, an additional Barman configuration file is created. For example, to back up the server one , the file
is /etc/barman.d/one.conf , and the backups are stored in the subdirectory one in the Barman home directory. The configuration file and
directory names can be changed from the backed-up instance's backup_name setting defined on the vars section before the provisioning step.

instances:
- Name:
one
 backup:
two

…

- Name:
two
 role:
 -
barman

…

cluster_vars:

…
 barman_package_version: '1.56.2-1'

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 175

https://pgbarman.org/

The following variables can be set on the backed-up instance and are passed through into Barman's configuration with the prefix barman_ removed:

variable default

barman_archiver false

barman_log_file /var/log/barman.log

barman_backup_method rsync

barman_compression pigz

barman_reuse_backup link

barman_parallel_jobs 1

barman_backup_options concurrent_backup

barman_immediate_checkpoint false

barman_network_compression false

barman_basebackup_retry_times 3

barman_basebackup_retry_sleep 30

barman_minimum_redundancy 3

barman_retention_policy RECOVERY WINDOW OF 4 WEEKS

barman_last_backup_maximum_age 1 WEEK

barman_pre_archive_retry_script

barman_post_backup_retry_script

barman_post_backup_script

barman_streaming_wals_directory

backup_name backed up instance's name

Backup scheduling

TPA installs a cron job in /etc/cron.d/barman which will run every minute and invoke barman cron to perform maintenance tasks.

For each instance being backed up, it installs another cron job in /etc/cron.d/<backup_name> which takes the backups of that instance. This job
runs as determined by the barman_backup_interval variable for the instance, with the default being to take backups at 04:00 every Wednesday
and Saturday.

 - Name: myPrimary
 backup:
myBarman
 platform: bare
 ip_address: x.x.x.x
 node: 1
 role:
 - primary
 vars:
 backup_name: my_backup

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 176

SSH keys

TPA will generate ssh key pairs for the postgres and barman users and install them into the respective ~/.ssh directories, and add them to each
other's authorized_keys file. The postgres user must be able to ssh to the barman server in order to archive WAL segments (if configured), and the barman
user must be able to ssh to the Postgres instance to take or restore backups.

barman and barman_role Postgres users

TPA will create two Postgres users, barman and barman_role .

TPA versions <23.35 created the barman Postgres user as a superuser .

Beginning with 23.35 the barman user is created with NOSUPERUSER , so any re-deploys on existing clusters will remove the superuser
attribute from the barman Postgres user. Instead, the barman_role is granted the required set of privileges and the barman user is granted
barman_role membership.

This avoids granting the superuser attribute to the barman user, using the set of privileges provided in the Barman Manual.

Shared Barman server

Note

To use the shared Barman functionality with clusters created using a TPA version earlier than 23.35, you must: a) upgrade to a version of TPA
that supports creating shared Barman instances. b) after upgrading TPA, run deploy on $first-cluster so TPA can make necessary config changes
for subsequent clusters to run smoothly against the shared Barman node.

Some deployments may want to share a single Barman server for multiple clusters. Shared Barman server deployment within tpaexec is supported via the
barman_shared setting that can be set via vars: under the Barman server instance for the given cluster config that plans to use an existing Barman

server. barman_shared is a boolean variable so possible values are true and false(default). When making any changes to the Barman config in a
shared scenario, you must ensure that configurations across multiple clusters remain in sync so as to avoid a scenario where one cluster adds a specific
configuration and a second cluster overrides it.

A typical workflow for using a shared Barman server across multiple clusters is described below.

1. Create a TPA cluster with an instance that has barman role (call it 'first-cluster' for this example).

2. In the second cluster (second-cluster for example), reference this particular Barman instance from $clusters/first-cluster as a shared Barman
server instance and use bare as platform so we are not trying to create a new Barman instance when running provision. Also specify the IP
address of the Barman instance that this cluster can use to access it.

- Name:
myBarman
 node: 5
 role:
 -
barman
 platform: bare
 ip_address: x.x.x.x
 vars:
 barman_shared: true

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 177

https://docs.pgbarman.org/release/latest/#postgresql-connection

3. Once the second-cluster is provisioned but before running deploy, make sure that it can access the Barman server instance via ssh. You can allow
this access by copying second-cluster's public key to Barman server instance via ssh-copy-id and then do an ssh to make sure you can login
without having to specify the password.

4. Copy the Barman user's keys from first-cluster to second-cluster

5. Run tpaexec deploy $clusters/second-cluster

Mixed-platform clusters

By declaring the shared Barman instance as platform: bare you might have changed your cluster to a mixed-platform cluster. This may
require you to adjust other parts of config.yml to accommodate this change. Specifically, the instance_defaults section must only
contain settings which are applicable to all instances in the cluster. If, for example, your instance_defaults contains a setting such as
type which is only valid for platform: aws you must move that setting out of instance_defaults and into only the instances

which use the AWS platform.

Special considerations for shared Barman servers

You must use caution when setting up clusters that share a Barman server instance. There are a number of important aspects you must consider before
attempting such a setup.

1. Make sure that no two instances in any of the clusters sharing a Barman server use the same name. The --cluster-prefixed-hostnames
option of tpaexec configure may be helpful in this respect.

2. Barman configuration and settings otherwise should remain in sync in all the clusters using a common Barman server to avoid a scenario where
one cluster sets up a specific configuration and the others do not either because the configuration is missing or uses a different value.

3. The version of Postgres on instances being backed up across different clusters needs to be the same.

4. Different clusters using a common Barman server cannot specify different versions of Barman packages when attempting to override the default.

Some of these may be addressed in a future release as we continue to improve the shared Barman server support.

Warning

Be extremely careful when deprovisioning clusters sharing a common Barman node. Especially where the first cluster that deployed Barman
uses non-bare platform. Deprovisioning the first cluster that originally provisioned and deployed Barman will effectively leave other clusters
sharing the Barman node in an inconsistent state because the Barman node will already have been deprovisioned by the first cluster and it
won't exist anymore.

add first-cluster's key to the ssh-
agent
$ cd $clusters/first-cluster
$ ssh-add id_first-clutser
$ cd $clusters/second-cluster
$ ssh-keyscan -t rsa,ecdsa -4 $barman-server-ip >> tpa_known_hosts
$ ssh-copy-id -i id_second-cluster.pub -o 'UserKnownHostsFile=tpa_known_hosts' $user@$barman-server-ip
$ ssh -F ssh_config $barman-
server

$ mkdir $clusters/second-cluster/keys
$ cp $clusters/first-cluster/keys/id_barman* clusters/second-
cluster/keys

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 178

33.7 Configuring EFM

TPA will install and configure EFM when failover_manager is set to efm .

Note that EFM is only available via EDB's package repositories and requires a valid subscription.

EFM configuration

TPA will generate efm.nodes and efm.properties with the appropriate instance-specific settings, with remaining settings set to the respective
default values. TPA will also place an efm.notification.sh script which basically contains nothing by default and leaves it up to the user to fill it in
however they want. TPA will override the default settings for auto.allow.hosts and stable.nodes.file to simplify adding agents to the
cluster.

See the EFM documentation for more details on EFM configuration.

efm_user_password_encryption

Must be either scram-sha-256 or md5

Set efm_user_password_encryption to control the auth-method for the efm Postgres user's auth-method in pg_hba.conf as well as
the algorithm used when generating it's encrypted password.

efm_conf_settings

You can use efm_conf_settings to set specific parameters. These must be written as entries in an Ansible dictionary, in key: value form

See the documentation on the efm.properties file for details on which settings can be configured.

If you make changes to values under efm_conf_settings , TPA will always restart EFM to activate the changes.

EFM witness

TPA will install and configure EFM as witness on instances whose role contains efm-witness .

efm_user_password_encryption: 'scram-sha-256' # or can be set to
`md5`

cluster_vars:
 efm_conf_settings:
 notification.level: WARNING
 ping.server.ip: <well known address in
network>

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 179

https://www.enterprisedb.com/docs/efm/latest/
https://www.enterprisedb.com/docs/efm/latest/04_configuring_efm/01_cluster_properties/

Repmgr

EFM works as a failover manager and therefore TPA will still install repmgr for setting up postgresql replicas on postgres versions 11 and below.
repmgrd i.e. repmgr's daemon remains disabled in this case and repmgr's only job is to provided replication setup functionality.

For postgres versions 12 and above, any cluster that uses EFM will use pg_basebackup to create standby nodes and not use repmgr in any form.

Node Promotability

TPA determines whether a node is eligible for promotion by EFM during failover based on the node's role and replication topology. The following rules are
applied when generating the EFM configuration:

Witness nodes (witness role) are never promotable.
Nodes with the efm-not-promotable role are not eligible for promotion. This can be used to prevent specific standbys, such as DR or
reporting nodes, from being promoted to primary.
Cascading standbys (nodes that are not directly replicating from the primary) are also not promotable.
All other nodes are considered promotable by default.

To explicitly prevent a standby from being promoted, add efm-not-promotable to the node’s roles list in your cluster configuration. This ensures
that EFM will not attempt to promote this node during failover events.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 180

33.8 Configuring haproxy

TPA will install and configure haproxy on instances whose role contains haproxy .

By default, haproxy listens on 127.0.0.1:5432 for requests forwarded by pgbouncer running on the same instance. You must specify a list of
haproxy_backend_servers to forward requests to.

TPA will install the latest available version of haproxy by default. You can install a specific version instead by setting haproxy_package_version:
1.9.15* (for example).

Note: see limitations of using wildcards in package_version in tpaexec-configure.

Haproxy packages are selected according to the type of architecture. An EDB managed haproxy package may be used but requires a subscription.
Packages from PGDG extras repo can be installed if required.

You can set the following variables on any haproxy instance.

Variable Default value Description

haproxy_bind_ad
dress 127.0.0.1*

The address to which haproxy should bind
*0.0.0.0 if failover_manager is patroni. Users should change this value to something more
restrictive and appropriate for their cluster networking

haproxy_port 5432 (5444 for
EPAS)

The TCP port haproxy should listen on

haproxy_read_on
ly_port

5433 (5445 for
EPAS)

TCP port for read-only load-balancer

haproxy_backend
_servers

None A list of Postgres instance names

haproxy_maxconn max_connect
ions ×0.9

The maximum number of connections allowed per backend server; the default is derived from the
backend's max_connections setting

haproxy_peer_en
abled

True*
Add known haproxy hosts as peer list.
* False if failover_manager is harp or patroni.

Read-Only load-balancer

Haproxy can be configured to listen on an additional port for read-only access to the database. At the moment this is only supported with the Patroni
failover manager. The backend health check determines which postgres instances are currently acting as replicas and will send traffic using a roundrobin
load balancing algorithm.

The read-only load balancer is disabled by default but can be turned on using the cluster_vars variable
haproxy_read_only_load_balancer_enabled .

Server options

TPA will generate /etc/haproxy/haproxy.cfg with a backend that has a default-server line and one line per backend server. All but the
first one will be marked as "backup" servers.

Set haproxy_default_server_extra_options to a list of options on the haproxy instance to add options to the default-server line; and
set haproxy_server_options to a list of options on the backend server to add options (which will override the defaults) to the individual server
lines for each backend.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 181

The size of the RSA key size used for ssl-dh-param-file can be modified by adding the variable ha_proxy_dhparams_key_size in the
cluster_vars section.

Example

cluster_vars:
 ha_proxy_dhparams_key_size: 4096
instances:
- Name:
one
 vars:
 haproxy_server_options:
 - maxconn 33
- Name:
two
…
- Name: proxy
 role:
 - haproxy
 vars:
 haproxy_backend_servers:
 -
one
 -
two
 haproxy_default_server_extra_options:
 - on-error mark-
down
 - on-marked-down shutdown-
sessions

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 182

33.9 Configuring HARP

TPA will install and configure HARP when failover_manager is set to harp , which is the default for BDR-Always-ON clusters.

Installing HARP

You must provide the harp-manager and harp-proxy packages. Please contact EDB to obtain access to these packages.

Variables for HARP configuration

See the HARP documentation for more details on HARP configuration.

Variable Default
value

Description

cluster_name `` The name of the cluster.

harp_consensus_pro
tocol

`` The consensus layer to use (etcd or bdr)

harp_location loca
tion

The location of this instance (defaults to the location parameter)

harp_ready_status_
duration

10 Amount of time in seconds the node's readiness status will persist if not refreshed.

harp_leader_lease_
duration

6 Amount of time in seconds the Lead Master lease will persist if not refreshed.

harp_lease_refresh
_interval

2000 Amount of time in milliseconds between refreshes of the Lead Master lease.

harp_dcs_reconnect
_interval

1000 The interval, measured in ms, between attempts that a disconnected node tries to reconnect to the DCS.

harp_dcs_priority 500 In the case two nodes have an equal amount of lag and other qualified criteria to take the Lead Master lease,
this acts as an additional ranking value to prioritize one node over another.

harp_stop_database
_when_fenced

fals
e

Rather than simply removing a node from all possible routing, stop the database on a node when it is fenced.

harp_fenced_node_o
n_dcs_failure

fals
e

If HARP is unable to reach the DCS then fence the node.

harp_maximum_lag 1048
576

Highest allowable variance (in bytes) between last recorded LSN of previous Lead Master and this node
before being allowed to take the Lead Master lock.

harp_maximum_camo_
lag

1048
576

Highest allowable variance (in bytes) between last received LSN and applied LSN between this node and its
CAMO partner(s).

harp_camo_enforcem
ent

lag_
only

Whether CAMO queue state should be strictly enforced.

harp_use_unix_sock fals
e

Use unix domain socket for manager database access.

harp_request_timeo
ut

250 Time in milliseconds to allow a query to the DCS to succeed.

harp_watch_poll_in
terval

500 Milliseconds to sleep between polling DCS. Only applies when harp_consensus_protocol is bdr .

harp_proxy_timeout 1 Builtin proxy connection timeout, in seconds, to Lead Master.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 183

https://www.enterprisedb.com/docs/pgd/4/harp/04_configuration/

harp_proxy_keepali
ve

5 Amount of time builtin proxy will wait on an idle connection to the Lead Master before sending a keepalive
ping.

harp_proxy_max_cli
ent_conn

75 Maximum number of client connections accepted by harp-proxy (max_client_conn)

harp_ssl_password_
command

None a custom command that should receive the obfuscated sslpassword in the stdin and provide the handled
sslpassword via stdout.

harp_db_request_ti
meout

10s similar to dcs -> request_timeout, but for connection to the database itself.

harp_local_etcd_on
ly

None limit harp manager endpoints list to only contain the local etcd node instead of all etcd nodes

Variable Default
value

Description

You can use the harp-config hook to execute tasks after the HARP configuration files have been installed (e.g., to install additional configuration files).

Consensus layer

The --harp-consensus-protocol argument to tpaexec configure is mandatory for the BDR-Always-ON architecture.

etcd

If the --harp-consensus-protocol etcd option is given to tpaexec configure , then TPA will set harp_consensus_protocol to
etcd in config.yml and give the etcd role to a suitable subset of the instances, depending on your chosen layout.

HARP v2 requires etcd v3.5.0 or above, which is available in the products/harp/release package repositories provided by EDB.

You can configure the following parameters for etcd:

Variable Default value Description

etcd_peer_port 2380 The port used by etcd for peer communication

etcd_client_port 2379 The port used by clients to connect to etcd

bdr

If the --harp-consensus-protocol bdr option is given to tpaexec configure , then TPA will set harp_consensus_protocol to bdr
in config.yml. In this case the existing PGD instances will be used for consensus, and no further configuration is required.

Configuring a separate user for harp proxy

If you want harp proxy to use a separate readonly user, you can specify that by setting harp_dcs_user: username under cluster_vars. TPA will use
harp_dcs_user setting to create a readonly user and set it up in the DCS configuration.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 184

Configuring a separate user for harp manager

If you want harp manager to use a separate user, you can specify that by setting harp_manager_user: username under cluster_vars .
TPAexec will use that setting to create a new user and grant it the bdr_superuser role.

Custom SSL password command

The command provided by harp_ssl_password_command will be used by HARP to de-obfuscate the sslpassword given in connection string. If
sslpassword is not present then harp_ssl_password_command is ignored. If sslpassword is not obfuscated then
harp_ssl_password_command is not required and should not be specified.

Configuring the harp service

You can configure the following parameters for the harp service:

Variable Default
value

Description

harp_manager_restar
t_on_failure

fals
e

If true , the harp-manager service is overridden so it's restarted on failure. The default is false to
comply with the service installed by the harp-manager package.

Configuring harp http(s) health probes

You can enable and configure the http(s) service for harp that will provide api endpoints to monitor service's health.

Variable Default value Description

harp_http_o
ptions

enable: false
secure: false
host: <inventory_hostname>
port: 8080
probes:

 timeout: 10s
endpoint: "host=<proxy_name> port=<6432> dbname=
<bdrdb> user=<username>"

Configure the http section of harp config.yml that
defines the http(s) api settings.

The variable can contain these keys:

The cert_file and key_file keys are both required if you use secure: true and are willing to use your own certificate and key.

enable: false
secure: false
cert_file: "/etc/tpa/harp_proxy/harp_proxy.crt"
key_file: "/etc/tpa/harp_proxy/harp_proxy.key"
host: <inventory_hostname>
port: 8080
probes:
 timeout:
10s
endpoint: "<valid dsn>"

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 185

The cert_file and key_file keys are both required if you use secure: true and are willing to use your own certificate and key.

You must ensure that both certificate and key are available at the given location on the target node before running deploy .

Leave both cert_file and key_file empty if you want TPA to generate a certificate and key for you using a cluster specific CA certificate. TPA CA
certificate won't be 'well known', you will need to add this certificate to the trust store of each machine that will probe the endpoints. The CA certificate
can be found on the cluster directory on the TPA node at: <cluster_dir>/ssl/CA.crt after deploy .

see harp documentation for more information on the available api endpoints.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 186

33.10 Configuring Postgres Enterprise Manager (PEM)

TPA will install and configure PEM when tpaexec configure command is run with --enable-pem command line option.

The default behavior with --enable-pem is to enable pem-agent role for all postgres instances in the cluster. pem-agent role will also be
added to barman nodes when --enable-pg-backup-api command line option is used alongside --enable-pem .

A dedicated instance named pemserver will also be added to the cluster.

Since PEM server uses postgres backend; pemserver instance implicitly uses postgres role as well which ensures that pemserver gets a valid postgres
cluster configured for use as PEM backend. All configuration options available for a normal postgres instance are valid for PEM's backend postgres
instance as well. See following for details:

Configure pg_hba.conf
Configure postgresql.conf

Note that PEM is only available via EDB's package repositories and therefore requires a valid subscription.

Supported architectures

PEM is supported with all architectures via the --enable-pem configuration command line option, with the exception of the BDR-Always-ON
architecture when used with EDB Postgres Extended. You can optionally edit the generated cluster config (config.yml) and assign or remove pem-
agent role from any postgres instance in the cluster in order to enable or disable PEM there.

PEM component package versions

By default, TPA installs the latest available version of PEM agent and PEM server.

The version of the PEM agent and PEM server packages that are installed can be specified by including pem_agent_package_version: xxx and
pem_server_package_version: xxx under the cluster_vars section of the config.yml file.

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

cluster_vars:

…
 pem_agent_package_version: '9.7.0-1.el9'
 pem_server_package_version: '9.7.0-1.el9'

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 187

PEM configuration

TPA will configure pem agents and pem server with the appropriate instance-specific settings, with remaining settings set to the respective default
values. Some of the configuration options may be exposed for user configuration at some point in future.

PEM server's web interface is configured to run on https and uses 443 port for the same. PEM's webserver configuration uses self-signed certificates.

The default login credentials for the PEM server web interface use the postgres backend database user, which is set to postgres for postgresql and
enterprisedb for EPAS clusters by default. You can get the login password for the web interface by running tpaexec show-password
$clusterdir $user .

Passing additional options when registering PEM agents

TPA registers each PEM agent in the cluster using the pemworker utility's --register agent command.

A list of additional registration options can be passed by including pemagent_registration_opts in the cluster config.

For example:

The PEM documentation lists more information about registration options.

Useful extensions for the nodes with pem agent

By default, TPA will add sql_profiler , edb_wait_states and query_advisor extensions to any instances that have pem-agent role.

This list of default extensions for pem-agent nodes can be overriden by setting pemagent_extensions in config.yml.

If this list is empty, no extensions will be automatically included.

Providing an external certificate for PEM server SSL authentication

By default, the PEM server creates a self-signed certificate pair, server-pem.crt and server-pem.key and configures the webserver to use
them for HTTPS access.

The size of server-pem.key can be modified adding the variable pem_rsa_key_size to the cluster_vars section:

The size of the CA certificate expedited by the PEM database can also be modified adding the variable pem_db_ca_certificate_key_size to the

 pemagent_registration_opts:
 - --enable-smtp
true
 - --enable-heartbeat-
connection
 - --allow-batch-probes
true
 - -l
DEBUG1

 (...)
 cluster_vars:
 pem_rsa_key_size: 4096

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 188

https://www.enterprisedb.com/docs/pem/latest/registering_agent/#registering-a-pem-agent-using-the-pemworker-utility

The size of the CA certificate expedited by the PEM database can also be modified adding the variable pem_db_ca_certificate_key_size to the
cluster_vars section:

To provide your own certificate pair, create a directory under the root of the cluster directory named ssl/pemserver and place the certificate pair
inside.

cluster directory
├── ssl
│ └── pemserver
│ ├── externally-provided.crt
│ └── externally-provided.key

Next, set the variables pem_server_ssl_certificate and pem_server_ssl_key with the respective file names as values for the vars:
under the pem server instance or cluster_vars in the cluster config file.

TPA will handle copying these files over to the pem server instance and configure the webserver accordingly.

Shared PEM server

Some deployments may want to use a single PEM server for monitoring and managing multiple clusters in the organization. Shared pem server
deployment within tpaexec is supported via the pem_shared variable that you could set via vars: under the pem server instance for the given
cluster config that plans to use an existing pem server. pem_shared is a boolean variable so possible values are true and false(default). When
declaring a pemserver instance as shared, we tell the given cluster config that pemserver instance is in fact managed by a separate cluster config that
provisioned and deployed the pem server in the first place. So any changes we wanted to make to the pem server instance including postgres backend for
pem would be managed by the cluster where pemserver instance is NOT declared as a shared pem instance.

A typical workflow for using a shared pem server across multiple clusters would look something like this:

1. Create a tpaexec cluster with a single instance that has pem-server role (call it 'pem-cluster' for this example). We could as easily use the same
workflow in a scenario where pem is provisioned as part of a larger cluster and not just a single instance that runs as pemserver but we use a single
node cluster because it is easier to use that as an example and arguably easy to maintain as well.

 (...)
 cluster_vars:
 pem_db_ca_certificate_key_size: 4096

- Name: pemserver
 location: main
 node: 4
 role:
 - pem-server
 vars:
 pem_server_ssl_certificate: externally-
provided.crt
 pem_server_ssl_key: externally-
provided.key

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 189

2. In the other cluster (pg-cluster for example), reference this particular pemserver from $clusters/pem-cluster as a shared pem server instance and
use bare as platform so we are not trying to create a new pemserver instance. Also specify the IP address of the pemserver that this cluster can
use to access pemserver instance.

3. Before running deploy in the postgres cluster, make sure that pg-cluster can access pem server instance via ssh. You can allow this access by
copying pg-cluster's public key to pem server instance via ssh-copy-id and then do an ssh to make sure you can login without having to
specify the password.

4. Update postgresql config on pem server node so it allows connections from the new pg-cluster. You can modify existing pg_hba.conf on pem server
by adding new entries to pem_postgres_extra_hba_settings under vars: in pem-cluster's config.yml. For example:

and then run tpaexec provision $clusters/pem-cluster followed by tpaexec deploy $clusters/pem-cluster . When
complete, nodes from your new pg-cluster should be able to speak with pem server backend.

In order to make sure pem agents from the nodes in pg-cluster can connect and register with the pem server backend, you must first export

- Name: pemserver
 node: 5
 role:
 - pem-server
 platform: bare
 public_ip: 13.213.53.205
 private_ip: 10.33.15.102
 vars:
 pem_shared: true

add pem-clusters key to the ssh-agent (handy for `aws`
platform)
$ cd $clusters/pem-cluster
$ ssh-add id_pem-clutser
$ cd $clusters/pg-cluster
$ ssh-keyscan -4 $pem-server-ip >>
known_hosts
$ ssh-copy-id -i id_pg-cluster.pub -o 'UserKnownHostsFile=tpa_known_hosts' $user@$pem-server-
ip
$ ssh -F ssh_config
pemserver

instances:
- Name: pemserver
 location: main
 node: 1
 role:
 - pem-server
 vars:
 pem_postgres_extra_hba_settings:
 - "# Allow pem connections from pg-
cluster1.quire"
 - hostssl pem +pem_agent 10.33.15.108/32
cert
 - "# Allow pem connections from pg-
cluster1.upside"
 - hostssl pem +pem_agent 10.33.15.104/32
cert
 - "# Allow pem connections from pg-
cluster2.zippy"
 - hostssl pem +pem_agent 10.33.15.110/32
cert
 - "# Allow pem connections from pg-
cluster2.utopic"
 - hostssl pem +pem_agent 10.33.15.109/32
cert

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 190

5. In order to make sure pem agents from the nodes in pg-cluster can connect and register with the pem server backend, you must first export
EDB_PEM_CREDENTIALS_FILE=/path/to/pem/credentials/file before you run tpaexec deploy . Credentials file is a text file
that contains your access credentials to the pemserver's backend postgres instance in the username:password format.

If you don't know the backend password, you can get that by using show-password tpaexec command.

6. Run tpaexec deploy $clusters/pg-cluster so pem is deployed on the new pg-cluster while using shared pem server instance.

Mixed-platform clusters

By declaring the shared PEM instance as platform: bare you might have changed your cluster to a mixed-platform cluster. This may
require you to adjust other parts of config.yml to accommodate this change. Specifically, the instance_defaults section must only
contain settings which are applicable to all instances in the cluster. If, for example, your instance_defaults contains a setting such as
type which is only valid for platform: aws you must move that setting out of instance_defaults and into only the instances

which use the AWS platform.

Connecting to the PEM UI

PEM UI runs on https interface so you can connect with a running instance of PEM server via https://$pem-server-ip/pem. Login credentials for PEM UI
are set to the postgres backend user which uses postgres or enterprisedb for postgresql and epas flavours respectively. tpaexec's show-
password command will show the password for the backend user. For example:

See PEM documentation for more details on PEM configuration and usage.

$ cat
pem_creds
postgres:f1I%fw!QmWevdzw#EL#$Ulu1cWhg7&RT

tpaexec show-password $pem-clusterdir $user

tpaexec show-password $clusterdir $user

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 191

https://www.enterprisedb.com/docs/pem/latest/

33.11 PgBouncer

PgBouncer package version

By default, TPA installs the latest available version of PgBouncer.

The version of the PgBouncer package that is installed can be specified by including pgbouncer_package_version: xxx under the
cluster_vars section of the config.yml file.

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

Configuring PgBouncer

TPA will install and configure PgBouncer on instances whose role contains pgbouncer .

By default, PgBouncer listens for connections on port 6432 and, if no pgbouncer_backend is specified, forwards connections to
127.0.0.1:5432 (which may be either Postgres or haproxy, depending on the architecture).

Using PgBouncer to route traffic to the primary

If you are using the M1 architecture with repmgr you can set repmgr_redirect_pgbouncer: true hash under cluster_vars to
have PgBouncer connections directed to the primary. The PgBouncer will be automatically updated on failover to route to the new primary. You
should use this option in combination with setting pgbouncer_backend to the primary instance name to ensure that the cluster is initially
deployed with PgBouncer configured to route to the primary.

You can set the following variables on any pgbouncer instance.

Variable Default value Description

pgbouncer_port 6432 The TCP port pgbouncer should listen on

pgbouncer_backend 127.0.0.1 A Postgres server to connect to

pgbouncer_backend_
port

5432 The port that the pgbouncer_backend listens on

pgbouncer_max_clie
nt_conn

max_connections ×0.9
The maximum number of connections allowed; the default is derived from the backend's
max_connections setting if possible

pgbouncer_auth_use
r

pgbouncer_auth_user Postgres user to use for authentication

cluster_vars:

…
 pgbouncer_package_version: '1.8*'

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 192

Databases

By default, TPA will generate /etc/pgbouncer/pgbouncer.databases.ini with a single wildcard * entry under [databases] to forward
all connections to the backend server. You can set pgbouncer_databases as shown in the example below to change the database configuration.

Authentication

PgBouncer will connect to Postgres as the pgbouncer_auth_user and execute the (already configured) auth_query to authenticate users.

The pgbouncer_get_auth() function used as the auth_query by PgBouncer is created in a single database, the
pgbouncer_auth_database . Execute permissions are granted on this function to the pgbouncer_auth_user .

Example

instances:
- Name:
one
 vars:
 max_connections: 300
- Name:
two
- Name: proxy
 role:
 - pgbouncer
 vars:
 pgbouncer_backend:
one
 pgbouncer_databases:
 - name:
dbname
 options:
 pool_mode:
transaction
 dbname: otherdb
 - name: bdrdb
 options:
 host:
two
 port: 6543

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 193

33.12 pgd-proxy

pgd-proxy package version

By default, TPA installs the latest available version of pgd-proxy .

The version of the pgd-proxy package that is installed can be specified by including pgd_proxy_package_version: xxx under the
cluster_vars section of the config.yml file.

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

Configuring pgd-proxy

TPA will install and configure pgd-proxy for the PGD-Always-ON architecture with PGD 5 on any instance with pgd-proxy in its role .

(By default, the PGD-Always-ON architecture will run pgd-proxy on all the data nodes in every location, but you can instead create any number of
additional proxy instances with --add-proxy-nodes-per-location 3 .)

Configuration

pgd-proxy is configured at PGD level via SQL functions.

Hash Function Description

pgd_proxy_options bdr.alter_proxy_option() pgd-proxy configuration, e.g. port

bdr_node_groups bdr.alter_node_group_option() configuration for the proxy's node group, e.g.
enable_proxy_routing

bdr_node_options bdr.alter_node_option() routing configuration for individual PGD nodes

See the PGD documentation for more details.

You can use the pgd-proxy-config hook to execute tasks after the PGD PROXY configuration files have been installed (e.g., to install additional
configuration files).

cluster_vars:

…
 pgd_proxy_package_version: '5.0.0-1'

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 194

bdr_node_groups

Group-level options related to pgd-proxy can be set under bdr_node_groups along with other node group options:

cluster_vars:
 bdr_node_groups:
 - name: group1
 options:
 enable_proxy_routing: true

Note that enable_proxy_routing must be explicitly set to true for pgd-proxy to be enabled for the group.

bdr_node_options

Node-level options related to pgd-proxy can be set under bdr_node_options on any PGD instance:

instances:
- Name: first
 vars:
 bdr_node_options:
 route_priority: 42

pgd_proxy_options

Options for a pgd-proxy instance itself, rather than the group or nodes it is attached to, can be set under default_pgd_proxy_options under
cluster_vars (which applies to all proxies), or under pgd_proxy_options on any pgd-proxy instance:

cluster_vars:
 default_pgd_proxy_options:
 listen_port: 6432
 read_listen_port: 6433

instances:
- Name: someproxy
 vars:
 pgd_proxy_options:
 listen_port: 9000
 read_listen_port: 9001

In this case, while other instances will get their listen_port setting from cluster_vars , someproxy overrides that default setting and
configures its own listen_port in the instances' vars section.

PGD proxy http(s) health probes

You can enable and configure the http(s) service for PGD proxy that will provide api endpoints to monitor the proxy's health.

pgd_http_options under cluster_vars or instance vars will store all the settings that defines the http(s) api which live under the http
subsection of the proxy top section of pgd-proxy-config.yml .

The variable can contain these keys:

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 195

enable: false
secure: false
cert_file: "/etc/tpa/harp_proxy/harp_proxy.crt"
key_file: "/etc/tpa/harp_proxy/harp_proxy.key"
host: <inventory_hostname>
port: 8080
probes:
 timeout: 10s
endpoint: "<valid dsn>"

The cert_file and key_file keys are both required if you use secure: true and are willing to use your own certificate and key.

You must ensure that both certificate and key are available at the given location on the target node before running deploy .

Leave both cert_file and key_file empty if you want TPA to generate a certificate and key for you using a cluster specific CA certificate. TPA CA
certificate won't be 'well known', you will need to add this certificate to the trust store of each machine that will probe the endpoints. The CA certificate
can be found on the cluster directory on the TPA node at: <cluster_dir>/ssl/CA.crt after deploy .

see pgd-proxy documentation for more information on the available api endpoints.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 196

33.13 pglogical

pglogical package version

By default, TPA installs the latest available version of pglogical .

The version of the pglogical package that is installed can be specified by including pglogical_package_version: xxx under the
cluster_vars section of the config.yml file.

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

pglogical configuration

TPA can configure pglogical replication sets (publications) and subscriptions with pglogical v2 and pglogical v3.

cluster_vars:

…
 pglogical_package_version: '2.2.0*'

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 197

The pglogical extension will be created by default if you define publications or subscriptions with type: pglogical , but it is up to you to determine
which version will be installed (e.g., subscribe to the products/pglogical3/release repository for pglogical3).

Introduction

TPA can configure everything needed to replicate changes between instances using pglogical, and can also alter the replication setup based on config.yml
changes.

To publish changes, you define an entry with type: pglogical in publications . To subscribe to these changes, you define an entry with
type: pglogical in subscriptions , as shown above.

Pglogical does not have a named publication entity (in the sense that built-in logical replication has CREATE PUBLICATION). A publication in
config.yml just assigns a name to a collection of replication sets, and subscriptions can use this name to refer to the desired provider.

To use pglogical replication, both publishers and subscribers need a named local pglogical node. TPA will create this node with
pglogical.create_node() if it does not exist. For publications, the publication name is used as the pglogical node name. There can be only one

pglogical node in any given database, so you can have only one entry in publications per database.

However, pglogical subscriptions do have a name of their own. TPA will create subscriptions with the given name , and use a default value for the
pglogical node name based on the instance's name and the name of the database in which the subscription is created. You can specify a different
node_name if required—for example, when you have configured a publication in the same database, so that all subscriptions in that database must

share the same pglogical node.

TPA does some basic validation of the configuration—it will point out the error if you spell replication_sets as replciation_sets , or try to

instances:
- node: 1
 Name: kazoo

…
 vars:
 publications:
 - type: pglogical
 database: example
 name:
some_publication_name
 replication_sets:
 - name: custom_replication_set

…

- node: 2
 Name:
keeper
 vars:
 subscriptions:
 - type: pglogical
 database: example
 name: some_subscription_name
 publication:
 name:
some_publication_name
 replication_sets:
 - default
 -
default_insert_only
 - custom_replication_set

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 198

TPA does some basic validation of the configuration—it will point out the error if you spell replication_sets as replciation_sets , or try to
subscribe to a publication that is not defined, but it is your responsibility to specify a meaningful set of publications and subscriptions.

TPA will configure pglogical after creating users, extensions, and databases, but before any PGD configuration. You can set postgres_users and
postgres_databases to create databases for replication, and use the postgres-config-final hook to populate the databases before

pglogical is configured.

Publications

An entry in publications must specify a name and database , and may specify a list of named replication_sets with optional attributes,
as well as a list of table or sequence names.

Each replication set may specify optional attributes such as replicate_insert and autoadd_existing . If specified, they will be included as
named parameters in the call to pglogical.create_replication_set() , otherwise they will be left out and the replication set will be created
with pglogical's defaults instead.

Apart from manipulating the list of relations belonging to the replication set using the autoadd_* parameters in pglogical3, you can also explicitly
specify a list of tables or sequences. The name of each relation may be schema-qualified (unqualified names are assumed to be in public), and the
entry may include optional attributes such as row_filter (for tables only) or synchronize_data , as shown above.

publications:
- type: pglogical
 database: example
 name:
some_publication_name
 replication_sets:
 - name: default
 replicate_insert: true
 replicate_update: true
 replicate_delete: true
 replicate_truncate: true
 autoadd_tables: false
 autoadd_sequences: false
 autoadd_existing: true
 - name: custom_replication_set
 tables:
 - name: sometable
 - name: '"some-schema".othertable'
 columns: [a, b,
c]
 row_filter: 'a >
42'
 synchronize_data: true
 sequences:
 - name: someseq
 synchronize_data: true
 - name: '"some-schema".otherseq'

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 199

Subscriptions

An entry in subscriptions must specify a name and database , define a publication to subscribe to, and may specify other optional attributes of
the subscription.

A subscription can set publication.name (as shown above) to define which publication to subscribe to. If there is more than one publication with
that name (across the entire cluster), you may specify the name of an instance to disambiguate. If you want to refer to publications by name, don't create
multiple publications with the same name on the same instance.

Instead of referring to publications by name, you may explicitly specify a provider_dsn instead. In this case, the given DSN is passed to
pglogical.create_subscription() directly (and publication is ignored). You can use this mechanism to subscribe to instances outside

the TPA cluster.

The other attributes in the example above are optional. If defined, they will be included as named parameters in the call to
pglogical.create_subscription() , otherwise they will be left out. (Some attributes shown are specific to pglogical3.)

subscriptions:
- type: pglogical
 database: example
 name: some_subscription_name
 node_name: optional_pglogical_node_name
 publication:
 name:
some_publication_name
 # Optional
attributes:
 synchronize_structure: true
 synchronize_data: true
 forward_origins: ['all']
 strip_origins: false
 apply_delay: '1 second'
 writer: 'heap'
 writer_options:
 - 'magic'
 - 'key=value'
 - 'just-a-string'
 # Optional attributes that can be changed for an
existing
 #
subscription:
 replication_sets:
 - default
 -
default_insert_only
 - custom_replication_set
 enabled: true

- type: pglogical

…
 publication:
 name:
some_publication_name
 instance: kazoo

 #
OR

 provider_dsn: "host=… dbname=…"

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 200

Configuration changes

For publications, you can add or remove replication sets, change the attributes of a replication set, or change its membership (the tables and sequences it
contains).

If you change replicate_* or autoadd_* , TPA will call pglogical.alter_replication_set() accordingly (but note that you cannot
change autoadd_existing for existing replication sets, and the autoadd_* parameters are all pglogical3-specific).

If you change the list of tables or sequences for a replication set, TPA will reconcile these changes by calling
pglogical.alter_replication_set_{add,remove}_{table,sequence}() as needed.

However, if you change synchronize_data or other attributes for a relation (table or sequence) that is already a member of a replication set, TPA will
not propagate the changes (e.g., by dropping the table and re-adding it with a different configuration).

For subscriptions, you can only change the list of replication_sets and enable or disable the subscription (enabled: false).

In both cases, any replication sets that exist but are not mentioned in the configuration will be removed (with
pglogical.alter_subscription_remove_replication_set() on the subscriber, or pglogical.drop_replication_set() on the

publisher—but the default replication sets named default , default_insert_only , and ddl_sql will not be dropped.)

If you edit config.yml, remember to run tpaexec provision before running tpaexec deploy .

Interaction with PGD

It is possible to use PGD and pglogical together in the same database if you exercise caution.

PGD v3 uses pglogical3 internally, and will create a pglogical node if one does not exist. There can be only one pglogical node per database, so if you
configure a pglogical publication in bdr_database , the instance's bdr_node_name must be the same as the publication's name . Otherwise, the
node will be created for the publication first, and bdr.create_node() will fail later with an error about a node name conflict. Any
subscriptions in bdr_database must use the same node_name too.

Limitations

There is currently no support for pglogical.replication_set_{add,remove}_ddl()

There is currently no support for pglogical.replication_set_add_all_{tables,sequences}()

There is currently no support for pglogical.alter_subscription_{interface,writer_options}() or
pglogical.alter_subscription_{add,remove}_log()

pglogical v1 support is not presently tested.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 201

33.14 repmgr

TPA will install repmgr on all postgres instances that have the failover_manager instance variable set to repmgr ; this is the default setting.

The directory of the repmgr configuration file defaults to /etc/repmgr/<version> , where <version> is the major version of postgres being
installed on this instance, but can be changed by setting the repmgr_conf_dir variable for the instance. The configuration file itself is always called
repmgr.conf .

The default repmgr configuration will set up automatic failover between instances configured with the role primary and the role replica .

repmgr package version

By default, TPA installs the latest available version of repmgr.

The version of the repmgr package that is installed can be specified by including repmgr_package_version: xxx under the cluster_vars
section of the config.yml file.

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

repmgr configuration

The following instance variables can be set:

repmgr_priority : sets priority in the config file repmgr_location : sets location in the config file
repmgr_reconnect_attempts : sets reconnect_attempts in the config file, default 6 repmgr_reconnect_interval : sets
reconnect_interval in the config file, default 10 repmgr_use_slots : sets use_replication_slots in the config file, default 1
repmgr_failover : sets failover in the config file, default automatic

Any extra settings in repmgr_conf_settings will also be passed through into the repmgr config file.

repmgr on PGD instances

On PGD instances, repmgr_failover will be set to manual by default.

cluster_vars:

…
 repmgr_package_version: '4.0.5-1.pgdg90+1'

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 202

33.15 Configuring EDB Repos 2.0 repositories

TPA sources EDB software from EDB Repos 2.0. To use EDB Repos 2.0 you must export EDB_SUBSCRIPTION_TOKEN=xxx before you run tpaexec.
You can get your subscription token from the web interface.

Note

If you create your config.yml file using the tpaexec configure command, the edb_repositories key will be automatically
populated with the necessary repositories for your selected configuration, so you shouldn't need to edit it.

To specify the complete list of repositories from EDB Repos 2.0 to install on each instance, set edb_repositories to a list of EDB repository names:

This example will install the 'enterprise' subscription repository as well as 'postgres_distributed' giving access to EPAS and PGD products. On Debian or
Ubuntu systems, it will use the APT repository and on RedHat or SLES systems, it will use the rpm repositories, through the yum or zypper frontends
respectively.

cluster_vars:
 edb_repositories:
 - enterprise
 - postgres_distributed

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 203

https://www.enterprisedb.com/repos/
https://www.enterprisedb.com/repos-downloads

33.16 Configuring APT repositories

This page explains how to configure APT package repositories on Debian and Ubuntu systems.

You can define named repositories in apt_repositories , and decide which ones to use by listing the names in apt_repository_list :

This configuration would install the GPG key (with id key_id , obtained from key_url) and a new entry under /etc/apt/sources.list.d with
the given repo line (or lines) for the PGDG repository (which is already defined by default) and the new Example repository.

When you configure additional repositories, remember to include PGDG in apt_repository_list if you still want to install PGDG packages.

You can set apt_repository_list: [] to not install any repositories.

cluster_vars:
 apt_repositories:
 Example:
 key_id:
XXXXXXXX
 key_url: https://repo.example.com/path/to/XXXXXXXX.asc
 repo: >-
 deb https://repo.example.com/repos/Example/ xxx-Example
main

 apt_repository_list:
 - PGDG
 - Example

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 204

33.17 Configuring YUM repositories

This page explains how to configure YUM package repositories on RedHat systems.

You can define named repositories in yum_repositories , and decide which ones to use by listing the names in yum_repository_list :

This example shows two ways to define a YUM repository.

If the repository has a “repo RPM” (a package that customarily installs the necessary /etc/yum.repos.d/*.repo file and any GPG keys needed to
verify signed packages from the repository), you can just point to it.

Otherwise, you can specify a description, a baseurl , and a gpgkey URL, and TPA will create a /etc/yum.repos.d/Other.repo file for you
based on this information.

The EPEL and PGDG repositories are defined by default. The EPEL repository is required for correct operation, so you must always include EPEL in
yum_repository_list . You should also include PGDG if you want to install PGDG packages.

You can set yum_repository_list: [] to not install any repositories (but things will break without an alternative source of EPEL packages).

If you need to perform any special steps to configure repository access, you can use a pre-deploy hook to create the .repo file yourself:

cluster_vars:
 yum_repositories:
 Example:
 rpm_url: >-
 https://repo.example.com/repos/Example/example-
repo.rpm

 Other:
 description: "Optional repository description"
 baseurl:
https://other.example.com/repos/Other/$basearch
 gpgkey:

https://other.example.com/repos/Other/gpg.XXXXXXXXXXXXXXXX.key

 yum_repository_list:
 - EPEL
 - PGDG
 - Example
 - Other

- name: Define Example
repository
 copy:
 dest:
/etc/yum.repos.d/example.repo
 owner: root
 group: root
 mode: "0644"
 content: |
 [example]
 name=Example repo

baseurl=https://repo.example.com/repos/Example/
 enabled=1
 gpgkey=https://repo.example.com/repokey.asc
 gpgcheck=1

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 205

In this case, you do not need to list the repository in yum_repository_list .

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 206

33.18 Creating and using a local repository

If you create a local repository within your cluster directory, TPA will make any packages in the repository available to cluster instances. This is an easy
way to ship extra packages to your cluster.

Optionally, you can also instruct TPA to configure the instances to use only this repository, i.e., disable all others. In this case, you must provide all
packages required during the deployment, starting from basic dependencies like rsync, Python, and so on.

You can create a local repository manually, or have TPA create one for you. Instructions for both are included below.

Note

Specific instructions are available for managing clusters in an air-gapped environment.

Creating a local repository with TPA

TPA includes tools to help create such a local repository. Specifically the --enable-local-repo switch can be used with tpaexec configure
to create an empty directory structure to be used as a local repository, and tpaexec download-packages populates that structure with the
necessary packages.

Creating the directory structure

To configure a cluster with a local repository, run:

tpaexec configure --enable-local-repo …

This will generate your cluster configuration and create a local-repo directory and OS-specific subdirectories. See below for details of the layout.

Populate the repository and generate metadata

Run tpaexec download-packages to download all the packages required by a cluster into the local-repo. The resulting repository will contain the
full dependency tree of all packages so the entire cluster can be installed from this repository. Metadata for the repository will also be created
automatically meaning it is ready to use immediately.

Creating a local repository manually

Local repo layout

To create a local repository manually, you must first create an appropriate directory structure. When using --enable-local-repo , TPA will create a
local-repo directory and OS-specific subdirectories within it (e.g., local-repo/Debian/12), based on the OS you select for the cluster. We

recommend that this structure is also used for manually created repositories.

For example, a cluster running RedHat 8 might have the following layout:

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 207

local-repo/
`-- RedHat
 |-- 8.5 -> 8
 `-- 8
 `-- repodata

For each instance, TPA will look for the following subdirectories of local-repo in order and use the first one it finds:

<distribution>/<version> , e.g., RedHat/8.5
<distribution>/<major version> , e.g., RedHat/8
<distribution>/<release name> , e.g., Ubuntu/focal
<distribution> , e.g., Debian

The local-repo directory itself.

If none of these directories exists, of course, TPA will not try to set up any local repository on target instances.

Populating the repository and generating metadata

The steps detailed below must be completed before running tpaexec deploy .

To populate the repository, copy the packages you wish to include into the appropriate directory. Then generate metadata using the correct tool for your
system as detailed below.

Note

You must generate the metadata on the control node, i.e., the machine where you run tpaexec. TPA will copy the metadata and packages to
target instances.

Note

You must generate the metadata in the subdirectory that the instance will use, i.e., if you copy packages into local-repo/Debian/12 , you
must create the metadata in that directory, not in local-repo/Debian .

Debian/Ubuntu repository metadata

For Debian-based distributions, install the dpkg-dev package:

$ sudo apt-get update && sudo apt-get install -y dpkg-dev

Now you can use dpkg-scanpackages to generate the metadata:

$ cd local-repo/Debian/bookworm
download/copy .deb package files
$ dpkg-scanpackages . | gzip > Packages.gz

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 208

RedHat/SLES repository metadata

First, install the createrepo package:

$ sudo yum install -y createrepo

Now you can use createrepo to generate the metadata:

$ cd local-repo/RedHat/8
download/copy .rpm package files
$ createrepo .

How TPA uses the local repository

Copying the repository

TPA will use rsync to copy the contents of the repository directory, including the generated metadata, to a directory on target instances.

If rsync is not already available on an instance, TPA can install it (i.e., apt-get install rsync or yum install rsync). However, if you have
set use_local_repo_only , the rsync package must be included in the local repo. If required, TPA will copy just the rsync package using scp and
install it before copying the rest.

Repository configuration

After copying the contents of the local repo to target instances, TPA will configure the destination directory as a local (i.e., path-based, rather than URL-
based) repository.

If you provide, say, example.deb in the repository directory, running apt-get install example will suffice to install it, just like any package in
any other repository.

Package installation

TPA configures a repository with the contents that you provide, but if the same package is available from different repositories, it is up to the package
manager to decide which one to install (usually the latest, unless you specify a particular version).

(However, if you set use_local_repo_only: yes , TPA will disable all other package repositories, so that instances can only use the packages that
you provide in local-repo .)

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 209

33.19 Installing from source

You can define a list of extensions to build and install from their Git repositories by setting install_from_source in config.yml:

TPA will build and install extensions one by one in the order listed, so you can build extensions that depend on another (such as pglogical and BDR) by
mentioning them in the correct order.

Each entry must specify a name , git_repository_url , and git_repository_ref (default: master) to build. You can use SSH agent
forwarding or an HTTPS username/password to authenticate to the Git repository; and also set source_directory , build_directory ,
build_environment , and build_commands as shown above.

Run tpaexec deploy … --skip-tags build-clean in order to reuse the build directory when doing repeated deploys. (Otherwise the old
build directory is emptied before starting the build.) You can also configure local source directories to speed up your development builds.

Whenever you run a source build, Postgres will be restarted.

Build dependencies

If you're building from source, TPA will ensure that the basic Postgres build dependencies are installed. If you need any additional packages, mention
them in packages . For example

cluster_vars:
 install_from_source:
 - name:
ext
 git_repository_url: https://repo.example.com/ext.git
 git_repository_ref:
dev/example

 - name:
otherext
 git_repository_url: ssh://repo.example.com/otherext.git
 git_repository_ref:
master
 source_directory:
/opt/postgres/src/otherext
 build_directory: /opt/postgres/build/otherext
 build_commands:
 - "make -f /opt/postgres/src/otherext/Makefile
install"
 build_environment:
 VAR: value

cluster_vars:
 packages:
 common:
 - golang-1.16

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 210

33.20 Git credentials

This page explains how to clone Git repositories that require authentication.

This may be required when you change postgres_git_url to install Postgres from source or use install_from_source to compile and install
extensions.

You have two options to authenticate without writing the credentials to disk on the target instance:

For an ssh:// repository, you can add an SSH key to your local ssh-agent. Agent forwarding is enabled by default if you use --install-
from-source (forward_ssh_agent: yes in config.yml).

For an https:// repository, you can export TPA_GIT_CREDENTIALS=username:token in your environment before running tpaexec
deploy .

Note

When deploying to Docker on macOS, you should use only https:// repository URLs because Docker containers cannot be accessed by ssh
from the host in this environment.

SSH key authentication

If you are cloning an SSH repository and have an SSH keypair (id_example and id_example.pub), use SSH agent forwarding to authenticate on
the target instances:

You need to run ssh-agent locally. If your desktop environment does not already set this up for you (as most do— pgrep ssh-agent to
check if it's running), run ssh-agent bash to temporarily start a new shell with the agent enabled, and run tpaexec deploy from that
shell.

Add the required key(s) to the agent with ssh-add /path/to/id_example (the private key file)

Enable SSH agent forwarding by setting forward_ssh_agent: yes at the top level in config.yml before tpaexec provision . (This is
done by default if you use --install-from-source .)

During deployment, any keys you add to your agent will be made available for authentication to remote servers through the forwarded agent connection.

Use SSH agent forwarding with caution, preferably with a disposable keypair generated specifically for this purpose. Users with the privileges to access
the agent's Unix domain socket on the target server can co-opt the agent into impersonating you while authenticating to other servers.

HTTPS username/password authentication

If you are cloning an HTTPS repository with a username and authentication token or password, just export
TPA_GIT_CREDENTIALS=username:token in your environment before tpaexec deploy . During deployment, these credentials will be made
available to any git clone or git pull tasks (only). They will not be written to disk on the target instances.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 211

33.21 Environment

You can set target_environment to specify environment variables that TPA should set on the target instances during deployment (e.g., to specify an
HTTPS proxy, as shown below).

cluster_vars:
 target_environment:
 https_proxy: https://proxy.example:8080

TPA will ensure these settings are present in the environment (along with any others it needs) during deployment and the later execution of any cluster
management commands.

These environment settings are not persistent, but you can instead use extra_bashrc_lines to set environment variables for the postgres user.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 212

33.22 Python environment

TPA decides which Python interpreter to use based on the distribution it detects on a target instance. It will use Python 3 wherever possible, and fall back
to Python 2 only when unavoidable.

The tpaexec configure command will set preferred_python_version according to the distribution.

Distribution Python 2 Python 3

Debian 12/bookworm ✓ ✓ (3.11)

Debian 11/bullseye ✓ ✓ (3.9)

Debian 10/buster ✓ ✓ (3.7)

Ubuntu 24.04/jammy ✗ ✓ (3.12)

Ubuntu 22.04/jammy ✗ ✓ (3.10)

Ubuntu 20.04/focal ✗ ✓ (3.8)

RHEL 9.x ✗ ✓ (3.9)

RHEL 8.x ✗ ✓ (3.6)

RHEL 7.x ✓ ✗ (3.6)

Ubuntu 20.04, 22.04 and RHEL 8.x can be used only with Python 3.

RHEL 7.x ships with Python 3.6, but the librpm bindings for system Python 3 are not available.

You can decide for other distributions whether you prefer python2 or python3 , but the default for new clusters is python3 .

Backwards compatibility

For compatibility with existing clusters, the default value of preferred_python_version is python2 , but you can explicitly choose python3
even on systems that were already deployed with python2 .

TPA will ignore this setting on distributions where it cannot use Python 3.

cluster_vars:
 preferred_python_version: python3

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 213

33.23 Configuring /etc/hosts

By default, TPA will add lines to /etc/hosts on the target instances with the IP address and hostname(s) of every instance in the cluster, so that they can
use each other's names for communication within the cluster (e.g., in primary_conninfo for Postgres).

You can specify a list of extra_etc_hosts_lines too:

If you don't want the default entries at all, you can specify the complete list of etc_hosts_lines for an instance instead, and only those lines will be
added to /etc/hosts:

If your /etc/hosts doesn't contain the default entries for instances in the cluster, you'll need to ensure the names can be resolved in some other way.

instances:
- Name:
one

…
 vars:
 extra_etc_hosts_lines:
 - 192.0.2.1
acid.example.com
 - 192.0.2.2 water.example.com

instances:
- Name:
one

…
 vars:
 etc_hosts_lines:
 - 192.0.2.1
acid.example.com
 - 192.0.2.2 water.example.com
 - 192.0.2.3
base.example.com

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 214

33.24 Filesystem configuration

TPA allows you to define a list of volumes attached to each instance.

This list comprises both platform-specific settings that are used during provisioning and filesystem-level settings used during deployment.

First, tpaexec provision will use the information to create and attach volumes to the instance (if applicable; see platform-specific sections below
for details). Then it will write a simplified list of volumes (containing only non-platform-specific settings) as a host var for the instance. Finally, tpaexec
deploy will act on the simplified list to set up and mount filesystems, if required.

Here's a moderately complex example from an AWS cluster:

In this example, the EC2 instance will end up with a 32GB EBS root volume, a 64GB io2 volume (provisioned-iops EBS volumes) mounted as
/opt/postgres/data, and a /tmp/scratch filesystem provided by an instance-store (“ephemeral”) volume, whose number and size are determined by the
instance type.

The details are documented in the section on AWS below, but settings like volume_type and volume_size are used during provisioning, while
settings under vars like volume_for or mountpoint are written to the inventory for use during deployment.

ephemeral0 instance store

nowadays most of the internal storage is NVMe in which volumes are automatically enumerated and assigned a device name by AWS, hence you
might need to modify device_name in your config.yml to whatever was given after the provision phase.

default_volumes

Volumes are properties of an instance. You cannot set them in cluster_vars , because they contain platform-specific settings.

The instance_defaults mechanism makes special allowances for volume definitions. Since volume definitions in a large cluster may be quite
repetitive (especially since we recommend that instances in a cluster be configured as close to each other as possible, you can specify
default_volumes as shown here:

instances:
- Name:
one

…
 volumes:
 - device_name: root
 volume_type:
gp2
 volume_size: 32
 - device_name: /dev/xvdf
 volume_type:
io2
 volume_size: 64
 iops: 5000
 vars:
 volume_for: postgres_data
 encryption: luks
 - device_name: /dev/xvdb
 ephemeral: ephemeral0
 vars:
 mountpoint: /mnt/scratch

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 215

Here every instance will have a 32GB root volume and a 100GB additional volume by default (as is the case for instance one , which does not specify
anything different). Instance two will have the same root volume, but it overrides /dev/xvdf to be 64GB instead, and has another 64GB volume in
addition. Instance three will have the same root volume, but no additional volume because it sets volume_type: none for the default
/dev/xvdf . Instance four will have no volumes at all.

An instance starts off with whatever is specified in default_volumes , and its volumes entries can override a default entry with the same
device_name , remove a volume by setting volume_type to none , add new volumes with different names, or reject the defaults altogether.

(This behaviour of merging two lists is specific to default_volumes . If you set any other list in both instance_defaults and instances , the
latter will override the former completely.)

Platform AWS

On AWS EC2 instances, you can attach EBS volumes.

instance_defaults:
 default_volumes:
 - device_name: root
 volume_type:
gp2
 volume_size: 32
 - device_name: /dev/xvdf
 volume_size: 100

instances:
- Name:
one

…
- Name:
two
 volumes:
 - device_name: /dev/xvdf
 volume_size: 64
 - device_name: /dev/xvdg
 volume_size: 64

…
- Name: three
 volumes:
 - device_name: /dev/xvdf
 volume_type: none
- Name: four
 volumes: []

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 216

TPA translates a device_name of root to /dev/sda or /dev/xvda based on the instance type, so that you don't need to remember (or change)
which one to use.

The volume_type specifies the EBS volume type, e.g., gp2 (for “general-purpose” EBS volumes), io1 for provisioned-IOPS volumes (in which case
you must also set iops: 5000), etc.

The volume_size specifies the size of the volume in gigabytes.

Set encrypted: yes to enable EBS encryption at rest. (This is an AWS feature, enabled by default in newly-generated TPA configurations, and is
different from LUKS encryption, explained below.)

Set delete_on_termination to false to prevent the volume from being destroyed when the attached instance is terminated (which is the
default behaviour).

Set ephemeral: ephemeralN to use a physically-attached instance store volume, formerly known as an ephemeral volume. The number, type, and
size of available instance store volumes depends on the instance type. Not all instances have instance store volumes. Use instance store volumes only for
testing or temporary data, and EBS volumes for any data that you care about.

For an EBS volume, you can also set snapshot: snap-xxxxxxxx to attach a volume from an existing snapshot. Volumes restored from snapshots
may be extraordinarily slow until enough data has been read from S3 and cached locally. (In particular, you can spin up a new instance with PGDATA
from a snapshot, but expect it to take several hours before it is ready to handle your full load.)

If you set attach_existing: yes for a volume, and there is an existing unattached EBS volume with matching Name/type/size/iops, a new volume
will not be created when launching the instance, but instead the existing one will be attached to the instance the first time it starts. Reattached EBS
volumes do not suffer from the performance limitations of volumes created from snapshots.

instances:
- Name:
one

…
 volumes:
 - device_name: root
 volume_type:
gp2
 volume_size: 32
 encrypted: yes

…
 - device_name: /dev/xvdf
 volume_type:
io1
 volume_size: 32
 iops: 10000
 delete_on_termination: false

…
 - device_name: /dev/xvdg
 ephemeral: ephemeral0

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 217

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Platform bare

TPA has no control over what volumes may be attached to pre-provisioned bare instances, but if you define volumes with the appropriate
device_name , it will handle mkfs and mount for the devices if required.

Platform Docker

Docker containers can have attached volumes, but they are bind-mounted directories, not regular block devices. They do not need to be separately
initialised or mounted. As such, the configuration looks quite different.

You may recognise these volume specifications as arguments to docker run -v .

The volumes are attached when the container is created, and there are no further actions during deployment.

RAID arrays

On AWS EC2 instances, only RAID 0 is recommended by Amazon. You can create RAID volumes with a similar command:

sudo mdadm --create --verbose /dev/md0 --level=0 --name=MY_RAID --raid-devices=number_of_volumes
device_name1 device_name2

This example will attach the block device named /dev/md0 . The handling of volume_for or mountpoint during deployment happens as the
same as with any other volume. TPA will handle mkfs and mount for it.

instances:
- Name:
one
 platform:
docker

…
 volumes:
 - /host/path/to/dir:/tmp/container/path:ro
 - named_volume:/mnt/somevol:rw

- Name:
one

…
 volumes:
 - device_name:
/dev/md0
 vars:
 volume_for: postgres_data

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 218

LUKS encryption

TPA can set up a LUKS-encrypted device:

If a volume with encryption: luks set is not already initialised, TPA will use cryptsetup to first luksFormat and then luksOpen it to map
it under /dev/mapper/mappedname before handling filesystem creation as with any other device.

(To avoid any possibility of data loss, TPA will refuse to set up LUKS encryption on a device that contains a valid filesystem already.)

If you create a LUKS-encrypted volume_for: postgres_data , TPA will configure Postgres to not start automatically at boot. You can use
tpaexec start-postgres clustername to mount the volume and start Postgres (and stop-postgres to stop Postgres and unmap the

volume).

The LUKS passphrase is generated locally and stored in the vault.

Filesystem creation and mounting

If any device does not contain a valid filesystem, it will be initialised with mkfs .

You can specify the fstype (default: ext4), fsopts to be passed to mkfs (default: none), and mountopts to be passed to mount and written to fstab
(see below).

instances:
- Name:
one

…
 volumes:
 - device_name:
/dev/xyz
 vars:
 encryption: luks
 luks_volume: mappedname
 volume_for:
…

instances:
- Name:
one

…
 volumes:
 - device_name:
/dev/xyz
 vars:
 volume_for:
…
 fstype: ext4
 fsopts:
 - -
cc
 - -m
2
 mountopts: 'defaults,relatime,nosuid'
 readahead: 65536
 owner: root
 group: root
 mode: "0755"

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 219

TPA will set the readahead for the device to 16MB by default (and make the value persist across reboots), but you can specify a different value for the
volume as shown above.

There are two ways to determine where a volume is mounted. You can either specify a mountpoint explicitly, or you can set volume_for to
postgres_data , postgres_wal , postgres_tablespace or barman_data , and TPA will translate the setting into an appropriate

mountpoint for the system.

Once the mountpoint is determined, the device will be mounted there with the given mountopts (default: defaults,noatime). An entry
will also be created for the filesystem in /etc/fstab .

You may optionally specify owner , group , or mode for the volume, and these attributes will be set on the mountpoint . Remember that at this
very early stage of deployment, you cannot count on the postgres user to exist. In any case, TPA will (separately) ensure that any directories needed by
Postgres have the right ownership and permissions, so you don't have to do it yourself.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 220

33.25 Uploading artifacts

You can define artifacts to create or copy files to target instances:

The following types are supported:

Use path to create or remove and change the ownership or mode of files and directories (takes the same parameters as Ansible's file module,
which it uses internally)

Use file to copy a file from the controller and set the ownership and mode (uses copy)

Use archive to extract files from an archive to a specified location (uses unarchive)

Use directory to rsync a directory from the controller to target instances (uses synchronize)

The example shows one entry for each of the above artifact types, but you can use these or any other parameters that the corresponding Ansible module
accepts.

Copying files and directories to target instances is a common-enough need that this feature provides a convenient shortcut you can use instead of writing
a custom hook.

cluster_vars:
 artifacts:
 - type: path
 path: /some/target/path
 state: directory
 owner: root
 group: root
 mode: "0755"
 - type: file
 src: /host/path/to/file
 dest: /target/path/to/file
 owner: root
 group: root
 mode: "0644"
 - type: archive
 src:
example.tar.gz
 dest: /some/target/path
 - type: directory
 src: /host/path/a/
 dest: /target/path/b/

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 221

33.26 ssh_key_file

By default, tpaexec provision will use ssh-keygen to generate a new SSH keypair for the cluster (into files named id_cluster_name and
id_cluster_name.pub inside the cluster directory).

If you want to use an existing key instead, you can set ssh_key_file at the top level of config.yml to the location of an SSH private key file. The
corresponding public key must be available with an extension of .pub at the same location:

(If this file does not already exist, it will be created by ssh-keygen during provisioning.)

ssh_key_file: ~/.ssh/id_rsa

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 222

33.27 Managing SSH host keys

TPA generates a set of SSH host keys while provisioning a cluster. These keys are stored in the cluster directory, under the hostkeys subdirectory.
These host keys are automatically installed into /etc/ssh on AWS EC2 instances and Docker containers.

By default, these host keys are not installed on bare instances, but you can set manage_ssh_hostkeys to enable it:

You must initially set up known_hosts in your cluster directory with correct entries, as described in the docs for bare instances. TPA will replace the
host keys during deployment.

The manage_ssh_hostkeys setting is meaningful only for bare instances. The generated host keys will be installed on all other instances.

known_hosts

TPA will add entries for every host and its public host keys to the global ssh_known_hosts file on every instance in the cluster, so that they can ssh to
each other without host key verification prompts, regardless of whether they have manage_ssh_hostkeys set or not.

instances:
- Name:
one

…
 platform: bare
 vars:
 manage_ssh_hostkeys: yes

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 223

33.28 Postgres source installation

TPA will compile and install Postgres from source if you set postgres_installation_method to src . This feature is meant for use in
development and testing, and allows you to switch between packaged and source builds within an identically-configured cluster.

Even here, you do not need to change the defaults, which will give you a working cluster with debugging enabled.

Git repository

The default settings will build and install Postgres from the community Git repository, using the REL_xx_STABLE branch corresponding to your
postgres_version . You can specify a different repository or branch (any valid git reference) as follows:

The default git.postgresql.org repository does not require authentication, but if necessary, you can use SSH agent forwarding or an HTTPS
username/password to authenticate to other repositories.

The repository will be cloned into postgres_src_dir (default: /opt/postgres/src/postgres), or updated with git pull if the directory
already exists (e.g., if you are re-deploying).

Build customisation

By default, TPA will configure and build Postgres with debugging enabled and sensible defaults in postgres_build_dir (default:
/opt/postgres/build/postgres). You can change various settings to customise the build:

This will run ./configure with the options in postgres_extra_configure_opts and the settings from
postgres_extra_configure_env defined in the environment. Some options are specified by default (e.g., --with-debug), but can be negated

by the corresponding --disable-xxx or --without-xxx options. Building --without-openssl is not supported.

If required, you can also change the following default build commands:

Run tpaexec deploy … --skip-tags build-clean in order to reuse the build directory when doing repeated deploys. (Otherwise the old

cluster_vars:
 postgres_git_url: git://git.postgresql.org/git/postgresql.git
 postgres_git_ref: REL_12_STABLE

cluster_vars:
 postgres_extra_configure_env:
 CFLAGS: "-O3"
 postgres_extra_configure_opts:
 - --with-
llvm
 - --disable-tap-
tests

cluster_vars:
 postgres_make_command: "make -
s"
 postgres_build_targets:
 - "all"
 - "-C contrib all"
 postgres_install_targets:
 - "install"
 - "-C contrib
install"

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 224

Run tpaexec deploy … --skip-tags build-clean in order to reuse the build directory when doing repeated deploys. (Otherwise the old
build directory is emptied before starting the build.) You can also configure local source directories to speed up your development builds.

Whenever you run a source build, Postgres will be restarted.

Additional components

Even if you install Postgres from packages, you can compile and install extensions from source. There's a separate page about how to configure
install_from_source .

If you install Postgres from source, however, you will need to install extensions from source as well, because the extension packages typically depend on
the Postgres package(s) being installed.

Package installation

There's a separate page about installing Postgres and Postgres-related packages with postgres_installation_method: pkg (the default).

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 225

33.29 Installing packages

TPA installs a batch of non-Postgres-related packages early during the deployment, then all Postgres-related packages together, and then packages for
optional components separately. This page is about installing packages like sysstat or strace, which have no dependency on Postgres packages.

You can add entries to packages under cluster_vars or a particular instance's vars in config.yml:

In the example above, TPA will install its own list of default_packages and the packages listed under packages.common on every instance, and
the remaining distribution-specific packages based on which distribution the instance is running. If any of these packages is not available, the deployment
will fail.

Don't list any packages that depend on Postgres; use extra_postgres_packages instead.

Optional packages

You can specify a list of optional_packages to install. They will be installed if they are available, and ignored otherwise. As with the other settings,
the common entries apply to every instance, whereas any other lists apply only to instances running the relevant distribution.

Removing packages

You can specify a list of unwanted_packages that should be removed if they are installed.

cluster_vars:
 packages:
 common:
 - pkg1
 - pkg2
 Debian:
 - debpkg1
 RedHat:
 -
rhpkg1
 -
rhpkg2
 Ubuntu:
 -
ubpkg1
 SLES:
 -
slespkg1

optional_packages:
 common:
 - pkg1
 - pkg2
 Debian:
 - debpkg4

unwanted_packages:
 common:
 - badpkg1
 Ubuntu:
 - badpkg2

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 226

33.30 Running initdb

TPA will first create postgres_data_dir if it does not exist, and ensure it has the correct ownership, permissions, and SELinux context. Then, unless
the directory already contains a VERSION file, it will run initdb to initialise postgres_data_dir .

You can use the pre-initdb hook to execute tasks before postgres_data_dir is created and initdb is run. If the hook initialises
postgres_data_dir , TPA will find the VERSION file and realise that it does not need to run initdb itself.

You can optionally set postgres_initdb_opts to a list of options to pass to initdb :

We recommend always including the --data-checksums option (which is included by default).

TPA will set TZ=UTC in the environment, and set LC_ALL to the postgres_locale you specify, when running initdb .

Separate configuration directory

By default, postgres_conf_dir is equal to postgres_data_dir , and the Postgres configuration files (postgresql.conf, pg_ident.conf,
pg_hba.conf, and the include files in conf.d) are created within the data directory. If you change postgres_conf_dir , TPA will move the generated
configuration files to the new location after running initdb .

cluster_vars:
 postgres_locale: de_DE.UTF-8
 postgres_initdb_opts:
 - --data-
checksums

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 227

33.31 Installing Postgres-related packages

TPA installs a batch of non-Postgres-related packages early during the deployment, then all Postgres-related packages together, and then packages for
optional components separately. This page is about installing packages like pglogical that depend on Postgres itself.

To install extra packages that depend on Postgres (e.g., Postgis), list them under extra_postgres_packages in cluster_vars or a particular
instance's vars in config.yml:

The packages listed under packages.common will be installed on every instance, together with the default list of Postgres packages, and any
distribution-specific packages you specify.

There's a separate page about compiling and installing Postgres from source.

cluster_vars:
 extra_postgres_packages:
 common:
 - postgres-pkg1
 - postgres-pkg2
 Debian:
 - postgres-deb-pkg1
 RedHat:
 - postgres11-
rhpkg1
 - postgres11-
rhpkg2
 Ubuntu:
 -
ubpkg1
 SLES:
 -
slespkg1

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 228

33.32 SSL Certificates

If you set enable_pg_backup_api: true in config.yml or use the --enable-pg-backup-api command line option during configure,
instances with the barman role will install pg-backup-api and set up an apache proxy for client cert authentication. This apache proxy will use an SSL
CA generated for the cluster to generate its server and client certificates.

PG Backup API package version

By default, TPA installs the latest available version of pg-backup-api.

The version of the pg-backup-api package that is installed can be specified by including pg_backup_api_package_version: xxx under the
cluster_vars section of the config.yml file.

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

pg-backup-api will be installed via packages by default, but you can also install from a git branch or a local directory. See configure-source.md and
install_from_source.md for more details.

Run pg-backup-api status on the barman node running pg-backup-api - if you get "OK" back, the pg-backup-api service is running.

To test that the proxy is working, run

curl --cert /etc/tpa/pg-backup-api/pg-backup-user.crt \
 --key /etc/tpa/pg-backup-api/pg-backup-user.key \
 -X GET https://{hostname}/diagnose

If it's working, you'll get a large json output. You can compare this with the output of barman diagnose , they should match exactly.

The root certificate will be copied to /etc/tpa/pg-backup-api/ by default.

A client certificate and key (pg-backup-user.crt and pg-backup-user.key) will be generated for testing (through tpaexec test) or
command line from the barman host. See Testing.

An apache proxy server certificate and key (pg-backup-api.crt and pg-backup-api.key) will also be generated

Each service needing to query the api will need to generate its own client certificate separately. PEM agent role, for instance, generates a client
certificate during it's setup when both --enable-pem and --enable-pg-backup-api (or config.yml equivalent) are used.

cluster_vars:
 enable_pg_backup_api: true

cluster_vars:

…
 pg_backup_api_package_version: '2.0.0-1.el8'

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 229

33.33 Setting sysctl values

By default, TPA sets various sysctl values on target instances, and includes them in /etc/sysctl.conf so that they persist across reboots.

You can optionally specify your own values in sysctl_values :

Any values you specify will take precedence over TPA's default values for that variable (if any). The settings will first be added to sysctl.conf line-by-
line, and finally loaded with sysctl -p .

Docker and lxd instances do not support setting sysctls, so TPA will skip this step altogether for those platforms.

cluster_vars:
 sysctl_values:
 kernel.core_pattern: core.%e.%p.%t
 vm.dirty_bytes: 4294967296
 vm.zone_reclaim_mode: 0

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 230

33.34 Creating Postgres databases

To create Postgres databases during deployment, add entries to the list of postgres_databases under cluster_vars or a particular instance's
vars in config.yml:

The example above would create two databases (apart from any databases that TPA itself decides to create, such as bdr_database).

Each entry must specify the name of the database to create. All other attributes are optional.

The owner is postgres by default, but you can set it to any valid username (the users in postgres_users will have been created by this time).

The encoding , lc_collate , and lc_ctype values default to the postgres_locale set at the time of running initdb (the default is to use the
target system's LC_ALL or LANG setting). If you are creating a database with non-default locale settings, you will also need to specify template:
template0 .

You can optionally specify the default tablespace for a database; the tablespace must already exist (see postgres_tablespaces).

You can specify optional lists of extensions and languages to create within each database (in addition to any extensions or languages inherited
from the template database). Any packages required must be installed already, for example by including them in extra_postgres_packages .

TPA will not drop existing databases that are not mentioned in postgres_databases , and it may create additional databases if required (e.g., for
BDR).

cluster_vars:
 postgres_databases:
 - name: exampledb

 - name: complexdb
 owner: example
 encoding: UTF8
 lc_collate: de_DE.UTF-8
 lc_ctype: de_DE.UTF-8
 template: template0
 extensions:
 - name:
hstore
 - name:
dblink
 languages:
 - name:
plperl
 - name:
plpython
 tablespace: exampletablespace

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 231

33.35 Creating Postgres tablespaces

To create Postgres tablespaces during deployment, define their names and locations in postgres_tablespaces under cluster_vars or a
particular instance's vars in config.yml.

If you define volumes with volume_for: postgres_tablespace set and a tablespace_name defined, they will be added as default entries to
postgres_tablespaces .

The example above would create two tablespaces: explicit (at /some/path) and implicit (at /opt/postgres/tablespaces/implicit/tablespace_data by
default, unless you specify a different mountpoint for the volume).

Every postgres_tablespace volume must have tablespace_name defined; the tablespace location will be derived from the volume's
mountpoint.

Every entry in postgres_tablespaces must specify a tablespace name (as the key) and its location . If you are specifying tablespace locations
explicitly, do not put tablespaces inside PGDATA, and do not use any volume mountpoint directly as a tablespace location (lost+found will confuse
some tools into thinking the directory is not empty).

By default, the tablespace owner is postgres , but you can set it to any valid username (the users in postgres_users will have been created by
this time).

Streaming replicas must have the same postgres_tablespace volumes and postgres_tablespaces setting as their upstream instance

You can set the default tablespace for a database in postgres_databases .

cluster_vars:
 postgres_tablespaces:
 explicit:
 location: /some/path

instances:
- Name: example

…
 volumes:
 - device_name: /dev/xvdh

…
 vars:
 volume_for:
postgres_tablespace
 tablespace_name:
implicit

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 232

33.36 Configuring .pgpass

TPA creates ~postgres/.pgpass by default with the passwords for the postgres_user (postgres or entreprisedb by default depending
on the postgres_flavour) in it, for use between cluster instances.

You can set pgpass_users to create entries for a different list of users. Note that the pgpass_users list overrides default values, so the
postgres_user (postgres / enterprisedb) is NOT included unless you explicitly include it in the pgpass_users list.

You can also include the postgres/pgpass role from hook scripts to create your own .pgpass file:

- include_role: name=postgres/pgpass
 vars:
 pgpassfile: ~otheruser/.pgpass
 pgpass_owner: otheruser
 pgpass_group: somegroup
 pgpass_users:
 - xyzuser
 - pqruser

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 233

33.37 The postgres Unix user

This page documents how the postgres user and its home directory are configured.

There's a separate page about how to create Postgres users in the database.

Shell configuration

TPA will install a .bashrc file and ensure that it's also included by the .profile or .bash_profile files.

It will set a prompt that includes the username and hostname and working directory, and ensure that postgres_bin_dir in in the PATH , and set
PGDATA to the location of postgres_data_dir .

You can optionally specify extra_bashrc_lines to append arbitrary lines to .bashrc . (Use the YAML multi-line string syntax >- to avoid having
to worry about quoting and escaping shell metacharacters.)

It will edit sudoers to allow sudo systemctl start/stop/reload/restart/status postgres , and also change ulimits to allow
unlimited core dumps and raise the file descriptor limits.

SSH keys

TPA will use ssh-keygen to generate and install an SSH keypair for the postgres user, and edit .ssh/authorized_keys so that the instances in
the cluster can ssh to each other as postgres .

TLS certificates

By default, TPA will generate a private key and a self-signed TLS certificate which are used by Postgres as the ssl_key_file and ssl_cert_file
respectively. The files are named using the TPA cluster name (cluster_name.key and cluster_name.crt) and located in /etc/tpa . For more
information, including how to provide your own key and certificate, see the documentation for postgresql.conf.

The size of self-signed TLS key can be modified adding the variable postgres_rsa_key_size to the cluster_vars section:

cluster_vars:
 extra_bashrc_lines:
 - alias la=ls\ -
la
 -
>-
 export
PATH="$PATH":/some/other/dir

 (...)
 cluster_vars:
 postgres_rsa_key_size: 4096

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 234

Username

The postgres_user and postgres_group settings (both postgres by default) are used consistently everywhere. You can change them if you
need to run Postgres as a different user for some reason.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 235

33.38 Creating Postgres users

To create Postgres users during deployment, add entries to the list of postgres_users under cluster_vars or a particular instance's vars in
config.yml:

The example above would create two users (apart from any users that TPA itself decides to create, such as repmgr or barman).

Each entry must specify the username to create.

Any roles in the granted_roles list will be granted to the newly-created user.

The role_attrs list may contain certain CREATE ROLE options such as [NO]SUPERUSER , [NO]CREATEDB , [NO]LOGIN (to create a user or a
role) etc.

Password generation

By default, TPA will generate a random password for the user, and store it in a vault-encrypted variable named <username>_password in the cluster's
inventory. You can retrieve the value later:

You cannot explicitly specify a password in config.yml, but you can store a different <username>_password in the inventory instead:

If you don't want the user to have a password at all, you can set generate_password: false .

cluster_vars:
 postgres_users:
 - username: example

 - username: otheruser
 generate_password: true
 role_attrs:
 - superuser
 -
replication
 granted_roles:
 - r1
 - r2

$ tpaexec show-password ~/clusters/speedy example
beePh~iez6lie4thi5KaiG%eghaeT]ai

$ tpaexec store-password ~/clusters/speedy example --
random
$ tpaexec show-password ~/clusters/speedy example
)>tkc}}k1y4&epaJ?;NJ:l'uT{C7D*<p
$ tpaexec store-password ~/clusters/speedy
example
Password:
$ tpaexec show-password ~/clusters/speedy example
terrible insecure
password
$

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 236

https://www.postgresql.org/docs/12/sql-createrole.html

33.39 tpaexec archive-logs

To create a log directory and archive logs from instances, run

This will create a logs/YYYYMMDDHHMMss/ directory in your cluster directory and download a tar.gz archive of all the files under /var/log on each
instance in the cluster into a separate directory.

Prerequisites

If you have an existing cluster you can run tpaexec archive-logs immediately. But if you are configuring a new cluster, you must at least
provision the cluster. You will get more logs if you also deploy the cluster.

Quickstart

tpaexec archive-logs <cluster-
dir>

[tpa]$ tpaexec archive-logs
~/clusters/speedy

PLAY [Prepare local host archive]

TASK [Collect facts]
**
ok:
[localhost]

TASK [Set time stamp]

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 237

You can append -v , -vv , etc. to the command if you want more verbose output.

Generated files

You can find the logs for each instance under the cluster directory:

Archive contents example:

ok:
[localhost]

TASK [Create local log archive directory]

changed:
[localhost]

PLAY [Archive log files from target instances]

...

TASK [Remove remote archives]

changed: [kinship]
changed: [khaki]
changed: [uncivil]
changed:
[urchin]

PLAY RECAP **
khaki : ok=3 changed=3 unreachable=0
failed=0
kinship : ok=3 changed=3 unreachable=0
failed=0
localhost : ok=3 changed=1 unreachable=0
failed=0
uncivil : ok=3 changed=3 unreachable=0
failed=0
urchin : ok=3 changed=3 unreachable=0
failed=0

~/clusters/speedy/logs/
--
220220306T185049
 |-- khaki-logs-
20220306T185049.tar.gz
 |-- kinship-logs-
20220306T185049.tar.gz
 |-- uncivil-logs-
20220306T185049.tar.gz
 -- urchin-logs-20220306T185049.tar.gz

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 238

khaki-logs
|--
anaconda
| |-- anaconda.log
| |--
dbus.log
| |-- dnf.librepo.log
| |-- hawkey.log
| |--
journal.log
| |-- ks-script-
ipdkisn0.log
| |-- ks-script-
jr03uzns.log
| |-- ks-script-
mh2iidvh.log
| |-- lvm.log
| |-- packaging.log
| |--
program.log
| |--
storage.log
| |--
syslog
| -- X.log
|-- btmp
|-- dnf.librepo.log
-- dnf.log
dnf.rpm.log
-- hawkey.log
-- lastlog
-- private
--
tpaexec.log
-- wtmp

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 239

33.40 tpaexec download-packages

The purpose of the downloader is to provide the packages required to do a full installation of a TPA cluster from an existing configuration. This is useful
when you want to ship packages to secure clusters that do not have internet access, or avoid downloading packages repeatedly for test clusters.

The downloader will download the full dependency tree of packages required, and the resulting package repository will include metadata files for the
target distribution package manager, so can be used exclusively to build clusters. At this time package managers Apt and YUM are supported.

Note

The download-packages feature requires Docker to be installed on the TPA host. This is because the downloader operates by creating a
container of the target operating system and uses that system's package manager to resolve dependencies and download all necessary
packages. The required Docker setup for download-packages is the same as that for using Docker as a deployment platform.

Usage

An existing cluster configuration needs to exist which can be achieved using the tpaexec configure command. No specific options are required to
use the downloader. See configuring a cluster .

Execute the download-packages subcommand to start the download process. Provide the OS and OS version that should be used by the downloader.

tpaexec download-packages cluster-dir --os RedHat --os-version 8

This can also be expressed as a specific docker image. It is strongly recommended that you use one of the tpa images prefixed like the example below.

tpaexec download-packages cluster-dir --docker-image tpa/redhat:8

The downloader will place files downloaded in the directory local-repo by default. It is possible to download to alternative directory by using the
option --download-dir path .

Using the result

The contents of the local-repo directory is populated with a structure determined by ansible according to the OS contained in the docker image. For
example, the docker image tpa/redhat:8 would have the following:

cluster-dir/
`-- local-repo
 `-- RedHat
 `-- 8
 |-- *.rpm
 `-- repodata
 `-- *repodata-files*

You can use this in the cluster as is or copy it to a target control node. See recommendations for installing to an air-gapped environment. A local-repo will
be detected and used automatically by TPA.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 240

Cleaning up failed downloader container

If there is an error during the download process, the command will leave behind the downloader container running to help with debugging. For instance
you may want to log in to the failed downloader container to inspect logs or networking. Downloader container is typically named $cluster_name-
downloader unless it exceeds the allowed limit of 64 characters for the container name. You can check for the exact name by running docker ps to list
the running containers and look for a container name that matches your cluster name. In most cases you can log in to the running container by executing
docker exec -it $cluster_name-downloader /bin/bash . After the inspection, you can clean up the left over container by running the
download-packages command with --tags cleanup . For example:

tpaexec download-packages cluster-dir --docker-image tpa/redhat:8 --tags cleanup

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 241

33.41 TPA custom commands

You can define custom commands that perform tasks specific to your environment on the instances in a TPA cluster.

You can use this mechanism to automate any processes that apply to your cluster. These commands can be invoked against your cluster directory, like any
built-in cluster management command. Having a uniform way to define and run such processes reduces the likelihood of errors caused by
misunderstandings and operator error, or process documentation that was correct in the past, but has drifted away from reality since then.

Writing Ansible playbooks means that you can implement arbitrarily complex tasks; following the custom command conventions means you can take
advantage of various facts that are set based on your config.yml and the cluster discovery tasks that TPA performs, and not have to think about details like
connections, authentication, and other basic features.

This makes it much easier to write resilient, idempotent commands in a way that ad-hoc shell scripts (could be, but) usually aren't.

Quickstart

Create commands/mycmd.yml within your cluster directory
Run tpaexec mycmd /path/to/cluster

Example

Here's an example of a command that runs a single command on all instances in the cluster. Depending on the use-case, you can write commands that
target different hosts (e.g., hosts: role_postgres to run only on Postgres instances), or run additional tasks and evaluate conditions to determine
exactly what to do.

Always start with
this
- import_playbook: "{{ tpa_dir }}/architectures/lib/init.yml"
 tags:
always

- name: Perform custom command
tasks
 hosts:
all
 tasks:
 - name: Display last five lines of
syslog
 command: tail -5
/var/log/syslog
 become_user: root
 become: yes

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 242

33.42 TPA custom tests

You can easily define in-depth tests specific to your environment and application to augment TPA's builtin tests.

We strongly recommend writing tests for any tasks, no matter how simple, that you would run on your cluster to reassure yourself that everything is
working as you expect. Having a uniform and repeatable way to run such tests ensures that you don't miss out on anything important, whether you're
dealing with a crisis or just doing routine cluster management.

If you write tests that target cluster instances by their configured role (or other properties), you can be sure that all applicable tests will be run on the
right instances. No need to look up or remember how many replicas to check the replication status on, nor which servers are running pgbouncer, or any
other such details that are an invitation to making mistakes when you are checking things by hand.

Tests must not make any significant changes to the cluster. If it's not something you would think of doing on a production server, it probably shouldn't be
in a test.

Quickstart

Create tests/mytest.yml within your cluster directory
Run tpaexec test /path/to/cluster mytest

You can also create tests in some other location and use them across clusters with the --include-tests-from /other/path option to
tpaexec test .

(Run tpaexec help test for usage information.)

Example

Here's how to write a test that is executed on all Postgres instances (note hosts: role_postgres instead of hosts: all).

You can use arbitrary Ansible tasks to collect information from the cluster and perform tests. Just write tasks that will fail if some expectation is not met
(assert , fail … when , etc.).

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 243

You can use the builtin output.yml as shown above to record arbitrary test output in a timestamped test directory in your cluster directory.

Each test must be a complete Ansible playbook (i.e., a list of plays, not just a list of tasks). It will be imported and executed after the basic TPA setup tasks.

Destructive tests

Tests should not, by default, make any significant changes to a cluster. (Even if they do something like creating a table to test replication, they must be
careful to clean up after themselves.)

Any test that makes changes to a cluster that would be unacceptable on a production cluster MUST be marked as destructive . These may be tests
that you run only in development, or during the initial cluster "burn in" process.

You can define "destructive" tests by setting destructive: yes when including prereqs.yml in your test:

- name: Perform my custom
tests
 hosts: role_postgres
 tasks:

 # Always start with
this
 - include_role:
 name: test
 tasks_from:
prereqs.yml

 # Make sure that the PGDATA/PG_VERSION file exists. (This is just
a
 # simplified example, not something that actually needs
testing.)
 - name: Perform simple
test
 command: "test -f {{ postgres_data_dir
}}/PG_VERSION"
 become_user: "{{ postgres_user
}}"
 become: yes

 - name: Run
pg_controldata
 command: >
 {{ postgres_bin_dir }}/pg_controldata {{ postgres_data_dir
}}
 register:
controldata
 become_user: "{{ postgres_user
}}"
 become: yes

 # Write output to
clusterdir/$timestamp/$hostname/pg_controldata.txt
 - name: Record pg_controldata
output
 include_role:
 name: test
 tasks_from: output.yml
 vars:
 output_file: pg_controldata.txt
 content: |
 {{ controldata.stdout }}

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 244

You can define "destructive" tests by setting destructive: yes when including prereqs.yml in your test:

If someone then runs tpaexec test /path/to/cluster mytest , they will get an error asking them to confirm execution using the --
destroy-this-cluster option.

(Note: using --destroy-this-cluster signifies an awareness of the risk of running the command. It does not guarantee that the test will actually
destroy the cluster.)

- hosts:
…
 tasks:
 - include_role:
 name: test
 tasks_from:
prereqs.yml
 vars:
 destructive: yes

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 245

33.43 Configuring the beacon agent

TPA installs and configures the beacon agent on nodes which have the role beacon-agent in config.yml . If --enable-beacon-agent is
passed to tpaexec configure , then all of the postgres nodes in the cluster have this role.

Beacon agent package version

By default, TPA installs the latest available version of beacon-agent .

The version of the beacon-agent package that is installed can be specified by including beacon_agent_package_version: xxx under the
cluster_vars section of the config.yml file.

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

Beacon agent configuration

The beacon agent configuration contains two parameters which must be set per-cluster, the access key and the project id.

The access key is kept encrypted in the cluster directory and can be set or read using tpa's store-password and show-password commands:

If the environment variable BEACON_AGENT_ACCESS_KEY is set when tpaexec provision is run, the access key is set from its value.

The project id is stored in config.yml under the beacon_agent_project_id key in cluster_vars . If the --
beacon_agent_project_id argument is passed to tpaexec configure then its value is written to config.yml appropriately.

Installing the beacon agent

TPA installs the beacon agent from EDB's repositories and creates an operating system user called beacon and a database user called beacon . A
configuration file for the agent is written to .beacon/beacon_agent.yaml in the beacon user's home directory.

cluster_vars:

…
 beacon_agent_package_version: '1.56.2-1'

…

$ tpaexec store-password .
beacon_agent_access_key
Password:

$ tpaexec show-password .
beacon_agent_access_key

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 246

Running the beacon agent

TPA installs a systemd service unit file to start the agent at boot-time, running as the beacon user.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 247

33.44 Compliance

TPA can generate configurations designed to make it easy for a cluster to comply with the STIG or CIS standards. If you pass --compliance stig or
--compliance cis to tpaexec configure , TPA will:

Check that other options are compatible with the appropriate standard.
Add various entries to the generated config.yml , including marking that this is a cluster meant to comply with a particular standard and
setting Postgres configuration as required by the standard.
Adjust some deployment tasks to enforce compliance.
Run checks at the end of deployment.

The deploy-time checks can be skipped by giving the option --excluded_tasks=compliance to tpaexec deploy . This feature is intended for
testing only, when using a test system on which full compliance is impossible (for example, because SSL certificates are not available).

There are some situations in which TPA will intentionally fail to comply with the selected standard; these are documented under Exceptions below.

STIG

STIG compliance is indicated by the --compliance stig option to tpaexec configure .

Option compatibility

STIG compliance requires the bare platform and the epas flavour. It requires the RedHat OS with version 8 or 9.

Settings in config.yml

The following entry is added to cluster_vars to use the SQL/Protect feature of EDB Postgres Advanced Server:

 extra_postgres_extensions: ['sql_protect']

The following entries are added to cluster_vars to force clients to use SSL authentication:

 hba_force_hostssl: True
 hba_force_certificate_auth: True
 hba_cert_authentication_map: sslmap

The following entries are added to cluster_vars to set GUCs in postgresql.conf:

 tcp_keepalives_idle: 10
 tcp_keepalives_interval: 10
 tcp_keepalives_count: 10
 log_destination: "stderr"
 postgres_log_file_mode: "0600"

The following entries are added to postgres_conf_settings in cluster_vars to set GUCs in postgresql.conf:

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 248

 edb_audit: "xml"
 edb_audit_statement: "all"
 edb_audit_connect: "all"
 edb_audit_disconnect: "all"
 statement_timeout: 1000
 client_min_messages: "ERROR"

Deployment differences

During deployment, TPA will set connection limits for the database users it creates, corresponding to the number of connections that are needed for
normal operation. As each user is set up, it will also check that an SSL client certificate has been provided for it.

Providing client ssl certificates

STIG requires DOD-approved ssl certificates for client connections. These certificates can't be generated by TPA and therefore must be supplied. When
setting up authentication for a user from a node in the cluster, TPA will look for a certificate/key pair on the node. The certificate and key should be in files
called <username>.crt and <username>.key in the directory given by the ssl_client_cert_dir setting. The default for this setting is / ,
so the files would be, for example, /barman.crt and /barman.key when the barman user is being set up.

Final checks

At the end of deployment, TPA will check that the server has FIPS enabled.

Exceptions

If you select EFM as the failover manager, TPA will configure password authentication for the EFM user. This goes against the STIG requirement that all
TCP connections use certificate authentication. The reason for this exception is that EFM does not support certificate authentication.

CIS

CIS compliance is indicated by the --compliance cis option to tpaexec configure .

Settings in config.yml

The following entries are added to cluster_vars to set GUCs in postgresql.conf:

 log_connections: "on"
 log_disconnections: "on"

The following entry is added to cluster_vars to enable required extensions:

 extra_postgres_extensions: ["passwordcheck", "pgaudit"]

The following entry is added to cluster_vars to set the umask for the postgres OS user:

 extra_bash_rc_lines: "umask 0077"

The following entries are added to postgres_conf_settings in cluster_vars to set GUCs in postgresql.conf:

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 249

 log_error_verbosity: "verbose"
 log_line_prefix: "'%m [%p]: [%l-1] db=%d,user=%u,app=%a,client=%h '"
 log_replication_commands: "on"
 temp_file_limit: "1GB"

Final checks

At the end of deployment, TPA will check that the server has FIPS enabled.

Exceptions

TPA does not support pgBackRest as mentioned in the CIS specification. Instead TPA installs Barman.

TPA does not install and configure set_user as required by the CIS specification. This is because preventing logon by the Postgres user would leave
TPA unable to connect to, and configure, the database.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 250

33.45 Locale

For some platform images and environments it might be desirable to set the region and language settings.

By default, TPAexec will install the en_US.UTF-8 locale system files. You can set the desired locale in your config.yml :

To find supported locales consult the output of the following command:

localectl list-locales

Or the contents of the file /etc/locales.defs on Debian or Ubuntu.

user_locale: en_GB.UTF-8

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 251

33.46 Patroni cluster management commands

Patroni can be used as a single master failover manager with the M1 architecture using the following command options.

tpaexec configure cluster_name -a M1 --enable-patroni --postgresql 14

Or by setting the config.yml option

TPA is able to deploy Patroni clusters using either patroni packages (from PGDG repositories) or edb-patroni packages (from EDB repositories).
You can configure that through the patroni_package_flavour option under cluster_vars in the config.yml, which can also be set through
the --patroni-package-flavour command-line argument. If no patroni_package_flavour is explicitly set, TPA will attempt to infere the
flavour based on the configured repositories: if EDB repositories were configured, implicitly select edb flavour, otherwise implicitly select community
flavour.

TPA configure will add 3 etcd nodes, and may add 2 haproxy nodes if you specify the option --enable-haproxy . Etcd is used for the Distributed
Configuration Store (DCS). Patroni supports other DCS backends, but they are not currently supported by EDB or TPA.

As an alternative to HAProxy, you can use the --enable-pgbouncer option to configure PgBouncer in the Postgres nodes. PgBouncer will be
configured to pool connections for the primary. Patroni will be configured to reconfigure PgBouncer upon failovers or switchovers in the cluster, so
PgBouncer follows the new primary Postgres instance.

TPA uses Patroni's feature of converting an existing PostgreSQL cluster. This allows for TPA to initialise and manage configuration. Once the PostgreSQL
cluster has been created, Patroni will take the management over. TPA will then remove any postgres configuration files used during setup.

Once set up, Postgres can continue to be managed using TPA and settings in config.yml for the cluster. You can also use Patroni interfaces, such as
the command line patronictl and the REST API, but it is recommended to use TPA methods wherever possible.

Patroni package version

By default, TPA installs the latest available version of Patroni.

The version of the Patroni package that is installed can be specified by including patroni_package_version: xxx under the cluster_vars
section of the config.yml file.

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

These configuration variables can be used to control certain behaviours in the deployment of Patroni in TPA.

cluster_vars:
 failover_manager: patroni

cluster_vars:

…
 patroni_package_version: '4.0.0-1PGDG.rhel8`'

…

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 252

Variable Default value Description

patroni_super
_user

postgres User to create in postgres for superuser role.

patroni_repli
cation_user

replicator Username to create in postgres for replication role.

patroni_resta
pi_user

patroni Username to configure for the patroni REST API.

patroni_rewin
d_user

rewind Username to create in postgres for pg_rewind function.

patroni_insta
llation_method

pkg Install patroni from packages or source (e.g. git repo or local source directory if docker).

patroni_packa
ge_flavour

community if no EDB
repository is configured,
else edb

Whether to install edb-patroni package (edb flavour, requires EDB repositories) or
patroni package (community flavour, requires PGDG and EPEL (RedHat based only)

repositories).

patroni_ssl_e
nabled

no Whether to enable SSL for REST API and ctl connection. Will use the cluster SSL cert and CA if
available.

patroni_rewin
d_enabled

yes Whether to enable postgres rewind, creates a user defined by patroni_rewind_user and adds
config section.

patroni_watch
dog_enabled

no Whether to configure the kernel watchdog for additional split brain prevention.

patroni_dcs etcd What backend to use for the DCS. The only option is etcd at the moment.

patroni_liste
n_port

8008 REST API TCP port number

patroni_conf_
settings

{}

A structured data object with overrides for patroni configuration.
Partial data can be provided and will be merged with the generated config.
Be careful to not override values that are generated based on instance information known at
runtime.

patroni_dynam
ic_conf_settin
gs

{}
Optional structured data just for DCS settings. This will be merged onto
patroni_conf_settings .

patroni_repl_
max_lag None

This is used in the haproxy backend health check only when
haproxy_read_only_load_balancer_enabled is true.

See REST API documentation for possible values for /replica?lag

Patroni configuration file settings

Configuration for patroni is built from three layers, starting with defaults set by the Patroni daemon, config loaded from the DCS, and finally from local
configuration. The last can be controlled from either configuration file and overrides via the environment. TPA controls the configuration file and values
are built up in this order.

DCS config to be sent to the API and stored in the bootstrap section of the config file:

TPA vars for postgres are loaded into the DCS settings, see postgresql.conf.md. Some features are not supported, see notes below.
Patroni defaults for DCS settings
User supplied defaults in patroni_dynamic_conf_settings , if you want to override any DCS settings you can do that here.

Local config stored in the YAML configuration file:

bootstrap.dcs loaded from previous steps above.
configuration enabled by feature flags, such as patroni_ssl_enabled , see table above.
then finally overloaded from user supplied settings, the patroni_conf_settings option. If you want to change or add configuration not
controlled by a feature flag then this is the best place to do it.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 253

https://patroni.readthedocs.io/en/latest/rest_api.html#health-check-endpoints

Please note that configuration is merged on top of configuration generated by TPA from cluster information, such as IP addresses, port numbers, cluster
roles, etc. Exercise caution in what you override as this might affect the stable operation of the cluster.

As Patroni stores all postgres configuration in the DCS and controls how and when this is distributed to postgres, some features of TPA are incompatible
with patroni:

It is not possible to change the template used to generate postgresql.conf with the setting postgres_conf_template .
You cannot change the location of Postgres config files with the setting postgres_conf_dir .

Patroni configuration in TPA config.yml

You can override single values:

Or full blocks (with an example from Patroni docs):

If you want to negate a value or section that is present in the default TPA config vars you can set the value to null . This will cause patroni to ignore this
section when loading the config file.

For example the default TPA config for log is

To turn off logging add this to config.yml :

TPA provides these minimal set of tools for managing Patroni clusters.

cluster_vars:
 patroni_conf_settings:
 bootstrap:
 dcs:
 ttl: 120

cluster_vars:
 patroni_conf_settings:
 restapi:
 http_extra_headers:
 'X-Frame-Options': 'SAMEORIGIN'
 'X-XSS-Protection': '1;
mode=block'
 'X-Content-Type-Options': 'nosniff'
 https_extra_headers:
 'Strict-Transport-Security': 'max-age=31536000; includeSubDomains'

log:
 dir:
/var/log/patroni

cluster_vars:
 patroni_conf_settings:
 log: null

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 254

Status

To see the current status of the TPA cluster according to Patroni run

tpaexec status cluster_name

Switchover

To perform a switchover to a replica node (e.g. to perform maintenance) run the command

tpaexec switchover cluster_name new_primary

The new_primary argument must be the name of an existing cluster node that is currently running as a healthy replica. Checks will be performed to ensure
this is true before a switchover is performed.

Once a switchover has been performed it is recommended that you run deploy and test to ensure a healthy cluster.

tpaexec deploy cluster_name
tpaexec test cluster_name

TPA will detect the current role of nodes during deploy regardless of what config.yml contains, for example if a different node is the leader.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 255

33.47 pg_hba.conf

The Postgres documentation explains the various options available in pg_hba.conf .

By default, TPA will generate a sensible pg_hba.conf for your cluster, to allow replication between instances, and connections from authenticated
clients.

You can add entries to the default configuration by providing a list of postgres_hba_settings :

You can override the default local all all peer line in pg_hba.conf by setting postgres_hba_local_auth_method: md5 .

If you don't want any of the default entries, you can change postgres_hba_template :

You can even create templates/my_hba.conf.j2 in your cluster directory and set:

If you put any template files outside the cluster directory's templates subdirectory, make sure to specify the absolute path to the file:

If you just want to leave the existing pg_hba.conf alone, you can do that too:

cluster_vars:
 postgres_hba_settings:
 - "# let authenticated users connect from
anywhere"
 - hostssl all all 0.0.0.0/0 scram-sha-
256

cluster_vars:
 postgres_hba_template: pg_hba.lines.j2
 postgres_hba_settings:
 - "# my lines of text"
 - "# and nothing but my
lines"
 - "# …not even any
clients!"
 - hostssl all all 0.0.0.0/0
reject

cluster_vars:
 postgres_hba_template:
my_hba.conf.j2

in the root of the cluster
directory
cluster_vars:
 postgres_hba_template: "{{ cluster_dir
}}/my_hba.conf.j2"

in a subdirectory of the cluster directory that is NOT
'templates'
cluster_vars:
 postgres_hba_template: "{{ cluster_dir
}}/subdirectory/my_hba.conf.j2"

in a directory outside of the cluster
directory
cluster_vars:
 postgres_hba_template: /path/to/file/outside/cluster_dir/my_hba.conf.j2

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 256

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

If you just want to leave the existing pg_hba.conf alone, you can do that too:

Although it is possible to configure pg_hba.conf to be different on different instances, we generally recommend a uniform configuration, so as to
avoid problems with access and replication after any topology-changing events such as switchovers and failovers.

cluster_vars:
 postgres_hba_template: ''

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 257

33.48 pg_ident.conf

You should not normally need to change pg_ident.conf , and by default, TPA will not modify it.

You can set postgres_ident_template to replace pg_ident.conf with whatever content you like.

You will also need to create templates/ident.j2 in the cluster directory:

{% for u in ['unixuser1', 'unixuser2'] %}
mymap {{ u }} dbusername
{% endfor %}

cluster_vars:
 pg_ident_template:
ident.j2

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 258

33.49 Adding Postgres extensions

Default Postgres extensions

By default, TPA adds the following extensions to every Postgres database (and if needed, automatically adds the corresponding entries into shared
preload libraries)

pg_stat_statements
pg_freespacemap
pg_visibility
pageinspect
pgstattuple

User defined extensions

Additional extensions can be configured within config.yml , by specifying the extension name, any required shared preload entries and the package
containing the extension.

When adding extensions, be sure to include both the package name to extra_postgres_packages and the extension name under
extra_postgres_extensions (or to the extensions list of a database defined under postgres_databases).

If the extension requires, add the shared preload entry name for the extension to the preload_extensions list. Note this name may differ from the
extension name itself, so be sure to check the extension's own documentation.

Here is a quick example for an extension that requires to be added to the shared preload extension list with a different entry for extension and library
name.

The following sections provide further information.

Adding the vector extension through configuration
Specifying extensions for configured databases
Including shared preload entries for extensions
Installing Postgres-related packages

TPA recognized extensions

The following list of extensions only require the extension name to be added in config.yml (either to extra_postgres_extensions OR to the
extensions list of a database specified in postgres_databases) and TPA will automatically include the correct package and any required entries

to shared_preload_libraries.

edb_pg_tuner
query_advisor

cluster_vars:
 [...]
 extra_postgres_packages:
 - postgresql-17-my-
extension
 extra_postgres_extensions:
 - my-
extension
 preload_extensions:
 - my_extension

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 259

edb_wait_states
sql_profiler
pg_failover_slots
sql_protect
edb_stat_monitor
autocluster
refdata
bluefin
postgis
pgaudit
passwordcheck

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 260

33.50 postgresql.conf

TPA creates a conf.d directory with various .conf files under it, and uses include_dir in the main postgresql.conf to use these
additional configuration files.

The Postgres configuration files (postgresql.conf, pg_ident.conf, and pg_hba.conf) and the included files under conf.d are always stored in
postgres_conf_dir . This is the same as postgres_data_dir by default, but you can set it to a different location if you wish to keep the

configuration separate from the data directory.

The main configuration mechanism is to set variables directly:

TPA splits the configuration up into multiple files. The two main files are 0000-tpa.conf and 0001-tpa_restart.conf . These contain settings
that require a server reload or restart to change, respectively. During deployment, TPA will write any changes to the correct file and reload or restart
Postgres as required.

TPA may use other files in certain circumstances (e.g., to configure optional extensions), but you do not ordinarily need to care where exactly a given
parameter is set.

You should never edit any of the files under conf.d , because the changes may be overwritten when you next run tpaexec deploy .

postgres_conf_settings

TPA provides variables like temp_buffers and maintenance_work_mem that you can set directly for many, but not all, available postgresql.conf
settings.

You can use postgres_conf_settings to set any parameters, whether recognised by TPA or not. You need to quote the value exactly as it would
appear in postgresql.conf :

This is most useful with settings that TPA does not recognise natively, but you can use it for any parameter (e.g., effective_cache_size can be set
as a variable, but authentication_timeout cannot).

These settings will be written to conf.d/9900-role-settings.conf , and therefore take priority over variables set in any other way.

If you make changes to values under postgres_conf_settings , TPA has no way to know whether the a reload is sufficient to effect the changes, or

cluster_vars:
 temp_buffers: 16MB
 log_connections: on
 autovacuum_vacuum_cost_limit: -1
 effective_cache_size:
4GB
 max_connections: 300
 max_wal_senders: 32

cluster_vars:
 effective_cache_size:
2GB
 postgres_conf_settings:
 effective_cache_size:
4GB
 authentication_timeout: 1min
 synchronous_standby_names: >-
 'any 2 ("first", "second",
"third")'
 bdr.global_lock_statement_timeout:
60s

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 261

If you make changes to values under postgres_conf_settings , TPA has no way to know whether the a reload is sufficient to effect the changes, or
if a restart is required. Therefore it will always restart the server to activate the changes. This is why it's always preferable to use variables directly
whenever possible.

shared_buffers

By default, TPA will set shared_buffers to 25% of the available memory (this is just a rule of thumb, not a recommendation). You can override this
default by setting shared_buffers_ratio: 0.35 to use a different proportion, or by setting shared_buffers_mb: 796 to a specific number
of MB, or by specifying an exact value directly, e.g., shared_buffers: "2GB" .

effective_cache_size

By default, TPA will set effective_cache_size to 50% of the available memory. You can override this default by setting
effective_cache_size_ratio: 0.35 to use a different proportion, or by setting effective_cache_size_mb: 796 to a specific number

of MB, or by specifying an exact value directly, e.g., effective_cache_size: "8GB" .

shared_preload_libraries

TPA maintains an internal list of extensions that require entries in shared_preload_libraries to work, and if you include any such extensions in
postgres_extensions , it will automatically update shared_preload_libraries for you.

If you are using unrecognised extensions that require preloading, you can add them to preload_extensions :

Now if you add myext to postgres_extensions , shared_preload_libraries will include myext .

By default, shared_preload_libraries is set in conf.d/8888-shared_preload_libraries.conf .

Setting shared_preload_libraries directly as a variable is not supported. You should not normally need to set it, but if unavoidable, you can set a
fully-quoted value under postgres_conf_settings . In this case, the value is set in conf.d/9900-tpa_postgres_conf_settings.conf .

Postgres log

The default log file is defined as /var/log/postgres/postgres.log . If you need to change that, you can now set postgres_log_file in your
config.yml:

TPA will take care of creating the directories and rotate the log when needed.

cluster_vars:
 preload_extensions:
 - myext
 -
otherext

cluster_vars:
 [...]
 postgres_log_file: '/srv/fantastic_logs/pg_server.log'

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 262

SSL configuration

By default, TPA will generate a private key and a self-signed TLS certificate which are used by Postgres as the ssl_key_file and ssl_cert_file
respectively. The files are named using the TPA cluster name (cluster_name.key and cluster_name.crt) and located in /etc/tpa , resulting
in the following default configuration in 0001-tpa_restart.conf :

This is sufficient to ensure that traffic between clients and server is encrypted in transit.

To provide your own certificates, upload them to the target nodes as artifacts, then set the path by specifying the following cluster variables:

Alternatively, if you upload your key and certificate to the default location, TPA will use them instead of generating its own, and you do not need to specify
ssl_key_file or ssl_cert_file . Note, however, that you must explicitly create /etc/tpa because it doesn't exist at the time artifacts are

uploaded. The permissions and ownership of these files will be adjusted by TPA when the postgres user is created during deployment.

ssl_key_file=/etc/tpa/cluster_name.key
ssl_cert_file=/etc/tpa/cluster_name.crt

cluster_vars:

...
 artifacts:
 - type: file
 dest:
/path/to/your_key.key
 src: /local/path/to/your_key.key
 owner: root
 group: root
 mode: "0644"
 - type: file
 dest: /path/to/your_cert.crt
 src: /local/path/to/your_cert.crt
 owner: root
 group: root
 mode: "0600"
 ssl_key_file:
/path/to/your_key.key
 ssl_cert_file: /path/to/your_cert.crt

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 263

Other SSL settings

TPA does not specify ssl_ca_file or ssl_crl_file by default. To provide these files yourself you can do so using artifacts and by
specifying the cluster variables of the same name.

Making changes by hand

There are two ways you can override anything in the TPA-generated configuration.

The first (and recommended) option is to use ALTER SYSTEM , which always takes precedence over anything in the configuration files:

You can also edit conf.d/9999-override.conf :

All other files under conf.d are subject to be overwritten during deployment if the configuration changes, but TPA will never change 9999-
override.conf after initially creating the empty file.

Depending on which settings you change, you may need to execute SELECT pg_reload_conf() or restart the server for the changes to take effect.

cluster_vars:

...
 artifacts:
 - type: path
 path:
/etc/tpa
 state: directory
 owner: root
 group: root
 mode: "0755"
 - type: file
 dest: /etc/tpa/cluster_name.key
 src: /local/path/to/your_key.key
 owner: root
 group: root
 mode: "0644"
 - type: file
 dest: /etc/tpa/cluster_name.crt
 src: /local/path/to/your_cert.crt
 owner: root
 group: root
 mode: "0600"

ALTER SYSTEM SET bdr.global_lock_statement_timeout TO '60s';

$ echo "bdr.global_lock_statement_timeout='60s'" >> conf.d/9999-override.conf

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 264

Generating postgresql.conf from scratch

By default, TPA will leave the default (i.e., initdb -generated) postgresql.conf file alone other than adding the include_dir . You should not
ordinarily need to override this behaviour, but you can set postgres_conf_template to do so:

Now the templates/pgconf.j2 in your cluster directory will be used to generate postgresql.conf.

cluster_vars:
 postgres_conf_template: 'pgconf.j2'

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 265

33.51 tpaexec deprovision

Deprovision destroys a cluster and associated resources.

For a cluster using the aws platform, it will remove the instances and all keypairs, policies, volumes, security groups, route tables, VPC subnets, internet
gateways and VPCs which were set up for the cluster.

For a cluster using the docker platform, it will remove the containers, any ccache directories which were set up for source builds in the containers, and
any docker networks which were set up for the cluster.

For all platforms, it will remove all the files created locally by tpaexec provision , including ssh keys, stored passwords, ansible inventory, and logs.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 266

33.52 tpaexec info

You can use the info command to output information about the TPA installation. Providing this information is valuable for troubleshooting.

Usage

Run tpaexec info

Subcommands

tpaexec info version

Displays current TPA version

tpaexec info platforms

Displays available deployment platforms

tpaexec info architectures

Displays available deployment architectures

tpaexec info platforms/<name>

Displays information about a particular platform

tpaexec info architectures/<name>

Displays information about a particular architecture

Example Output

The tpaexec info command outputs the following:

TPAexec 23.29
tpaexec=/opt/EDB/TPA/bin/tpaexec
TPA_DIR=/opt/EDB/TPA
PYTHON=/opt/EDB/TPA/tpa-venv/bin/python3 (v3.12.18, venv)
TPA_VENV=/opt/EDB/TPA/tpa-venv
ANSIBLE=/opt/EDB/TPA/tpa-venv/bin/ansible (v2.16.3)
Validated: ea844d1b90295597d080bbf824dbbc6954886cb54ffdb265c7c71b99bedee67b [OK]

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 267

33.53 tpaexec reconfigure

The tpaexec reconfigure command reads config.yml and generates a revised version of it that changes the cluster in various ways according to its
arguments.

Arguments

As with other tpaexec commands, the cluster directory must always be given.

Changing a cluster's architecture

The following arguments enable the cluster's architecture to be changed:

--architecture <architecture> (required)
The new architecture for the cluster. Accepts PGD-Always-ON and PGD-X as valid arguments

--pgd-proxy-routing <global|local> (required for PGD-Always-ON)
How PGD-Proxy is to route connections. See the PGD-Always-ON documentation for more information about the meaning of this argument.

--edb-repositories <repositories> (optional)
A space-separated list of EDB package repositories. It is usually unnecessary to specify this; tpaexec configure will choose a suitable
repository based on the postgres flavour in use in the cluster.

After changing the architecture, run tpaexec upgrade to make the required changes to the cluster.

Changing a cluster from PGD-Proxy to Connection Manager in PGD-Always-ON

--enable-connection-manager(required) The option to allow migration from PGD-Proxy on a PGD 5.9+ cluster to the new builtin
Connection Manager.

Changing a cluster from 2q to EDB repositories

The --replace-2q-repositories argument removes any 2ndQuadrant repositories the cluster uses and adds EDB repositories as required to
replace them.

After reconfiguring with this argument, run [tpaexec deploy)(tpaexec-deploy.md) to make the required changes to the cluster.

Output format

The following options control the form of the output:

--describe
Shows a description of what would be changed, without changing anything.

--check
Validates the changes that would be made and shows any errors any errors or warnings that result from validation, without changing anything.

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 268

--output <filename>
Writes the output to a file other than config.yml.

Sample invocation

$ tpaexec reconfigure ~/clusters/speedy\
 --architecture PGD-Always-ON\
 --pgd-proxy-routing local

Trusted Postgres Architect

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 269

	1 Trusted Postgres Architect
	Introduction
	What can TPA do?
	How do I use it?
	Configuration
	Provisioning
	Deployment
	Testing
	Incremental changes
	Cluster management
	Extensible through Ansible

	It's just Postgres
	Versioning in TPA
	Backwards compatibility

	Getting started

	2 Trusted Postgres Architect release notes
	2.1 Trusted Postgres Architect 23.40.1 release notes
	Bug Fixes

	2.2 Trusted Postgres Architect 23.40.0 release notes
	Enhancements
	Changes
	Bug Fixes

	2.3 Trusted Postgres Architect 23.39.0 release notes
	Highlights
	Enhancements
	Changes
	Bug Fixes

	2.4 Trusted Postgres Architect 23.38.1 release notes
	Bug Fixes

	2.5 Trusted Postgres Architect 23.38.0 release notes
	Highlights
	Enhancements
	Changes
	Bug Fixes

	2.6 Trusted Postgres Architect 23.37.0 release notes
	Highlights
	Enhancements
	Changes
	Bug Fixes

	2.7 Trusted Postgres Architect 23.36.0 release notes
	Highlights
	Enhancements
	Changes
	Bug Fixes

	2.8 Trusted Postgres Architect 23.35.0 release notes
	Highlights
	Enhancements
	Changes
	Bug Fixes

	2.9 Trusted Postgres Architect 23.34.1 release notes
	2.10 Trusted Postgres Architect 23.34 release notes
	2.11 Trusted Postgres Architect 23.33 release notes
	2.12 Trusted Postgres Architect 23.32 release notes
	2.13 Trusted Postgres Architect 23.31 release notes
	2.14 Trusted Postgres Architect 23.30 release notes
	2.15 Trusted Postgres Architect 23.29 release notes
	2.16 Trusted Postgres Architect 23.28 release notes
	2.17 Trusted Postgres Architect 23.27 release notes
	2.18 Trusted Postgres Architect 23.26 release notes
	2.19 Trusted Postgres Architect 23.25 release notes
	2.20 Trusted Postgres Architect 23.24 release notes
	2.21 Trusted Postgres Architect 23.23 release notes
	2.22 Trusted Postgres Architect 23.22 release notes
	2.23 Trusted Postgres Architect 23.21 release notes
	2.24 Trusted Postgres Architect 23.20 release notes
	2.25 Trusted Postgres Architect 23.19 release notes
	2.26 Trusted Postgres Architect 23.18 release notes
	2.27 Trusted Postgres Architect 23.17 release notes
	2.28 Trusted Postgres Architect 23.16 release notes
	2.29 Trusted Postgres Architect 23.15 release notes
	2.30 Trusted Postgres Architect 23.14 release notes
	2.31 Trusted Postgres Architect 23.13 release notes
	2.32 Trusted Postgres Architect 23.12 release notes
	2.33 Trusted Postgres Architect 23.1 to 23.11 release notes
	TPA 23.11
	Notable changes
	Minor changes

	TPA 23.10
	Minor changes
	Bug Fixes

	TPA 23.9
	Bugfixes

	TPA 23.8
	Notable changes
	Minor changes

	TPA 23.7
	Notable changes
	Minor changes
	Bugfixes

	TPA 23.6
	Notable changes
	Bugfixes

	TPA 23.5
	Notable changes

	TPA 23.4
	Bugfixes

	TPA 23.3
	Notable changes
	Minor changes
	Bugfixes

	TPA 23.2
	Notable changes
	Minor changes
	Bugfixes

	TPA 23.1
	Changes to package installation behavior
	Notable changes
	Minor changes
	Bugfixes

	3 TPA installation
	Quickstart
	Install TPA
	Install additional dependencies
	Verify installation (run as a normal user)

	Where to install TPA
	Installing TPA packages
	Install on Debian or Ubuntu
	Install on RHEL, Rocky, AlmaLinux or Oracle Linux
	SLES

	Setting up the TPA Python environment
	Installing TPA without internet or network access (air-gapped)
	Downloading TPA packages
	Installing without access to a Python package index

	Verifying your TPA installation
	Upgrading TPA
	Ansible versions

	4 Open source TPA
	What is Trusted Postgres Architect (TPA)?
	Next Steps
	TPA Open Source FAQs
	Can I use this if I'm not an EDB customer?
	Can I report an issue?
	Can I contribute?

	5 Installing TPA from source
	Quickstart
	Clone and setup
	Dependencies
	Python 3.12+
	Virtual environment options

	6 A First Cluster Deployment
	Installing TPA
	Installing Docker
	Creating a configuration with TPA
	Provisioning the deployment
	Deploying
	Testing
	Connecting

	7 Cluster configuration
	Quickstart
	Configuration options
	Architecture-specific options
	Platform options
	Owner
	Region
	Network configuration
	Instance type
	Disk space
	Hostnames

	Software selection
	Distribution
	EDB repositories
	Local repository support
	Software versions
	Postgres flavour and version
	Package versions

	Known issue with wildcard use
	Building and installing from source

	Overrides
	Ansible Tower
	Beacon agent
	Git repository
	Keyring backend for vault password
	Security standards compliance
	Examples

	8 tpaexec provision
	Prerequisites
	Quickstart
	Options
	Accessing the instances
	Generated files

	9 tpaexec deploy
	Prerequisites
	Quickstart
	Selective deployment
	deploy.yml

	10 tpaexec test
	Quickstart

	11 PGD-S
	Cluster configuration
	Overview of configuration options
	Mandatory Options
	Additional Options

	More detail about PGD-S configuration

	12 PGD-X
	Cluster configuration
	Overview of configuration options
	Mandatory Options
	Additional Options

	More detail about PGD-X configuration

	13 PGD-Always-ON
	Cluster configuration
	Overview of configuration options
	Mandatory Options
	Additional Options

	More detail about PGD-Always-ON configuration

	14 PGD Lightweight
	Cluster configuration
	Overview of configuration options
	Mandatory Options
	Additional Options

	More detail about Lightweight configuration

	15 BDR-Always-ON
	Cluster configuration
	Overview of configuration options
	Mandatory Options
	Additional Options

	More detail about BDR-Always-ON configuration

	16 M1
	Failover management
	Application failover
	Backup failover

	Cluster configuration
	Overview of configuration options
	Mandatory Options
	Additional Options

	More detail about M1 configuration

	17 aws
	API access setup
	Introduction
	Networking
	Instances

	Configuration
	Regions
	VPC (required)
	AMI (required)
	Subnets (optional)
	Security groups (optional)
	Internet gateways (optional)
	SSH keys (optional)
	S3 bucket (optional)
	Elastic IP addresses
	Instance profile (optional)

	18 bare(-metal servers)
	SSH access
	Distribution support
	IP addresses
	Starting afresh

	19 Docker
	Synopsis
	Operating system selection
	Installing Docker
	Cgroups
	Permissions
	Docker container privileges
	Privileged containers
	security_opts and the no-new-privileges flag
	Linux capabilities flags

	Docker storage configuration
	Docker MTU settings

	Docker container management

	20 Cluster configuration
	config.yml
	Variables
	Cluster variables
	Instance variables
	instance_defaults
	Locations

	21 Instance configuration
	System-level configuration
	Package repositories
	Package installation
	Other system-level tasks
	Skipping deployment completely

	Postgres
	Version selection
	Installation
	Configuration

	Other components
	Configuring and starting services

	After starting Postgres

	22 Building from source
	Quickstart
	Configuration
	Local source directories
	ccache

	Rebuilding

	23 TPA hooks
	Summary
	General-purpose hooks
	pre-deploy
	post-repo
	pre-initdb
	postgres-config
	postgres-config-final
	barman-pre-config
	efm-pre-config
	harp-config
	pgd-proxy-config
	post-deploy

	PGD hooks
	bdr-pre-node-creation
	bdr-post-group-creation
	bdr-pre-group-join

	Other hooks
	postgres-pre-update, postgres-post-update

	New hooks

	24 Upgrading your cluster
	Introduction
	Configuration
	Upgrading from BDR-Always-ON to PGD-Always-ON
	Upgrading from PGD-Always-ON to PGD-X
	Prerequisites
	Stage 1: Migrating to the Built-in Connection Manager
	Step 1.1: Reconfigure for Connection Manager
	Step 1.2: Apply the Configuration and Activate Connection Manager

	Stage 1 Complete
	Stage 2: Upgrading the Architecture to PGD-X
	Step 2.1: Reconfigure for the PGD-X Architecture
	Step 2.2: Perform the Software Upgrade

	Upgrade Complete

	PGD-Always-ON
	BDR-Always-ON
	M1
	Controlling the upgrade process
	Upgrading a Subset of Nodes
	Best Practice for PGD-Always-ON/BDR-Always-ON

	Package version selection

	25 tpaexec switchover
	Example
	Architecture options
	Repmgr redirect pgbouncer

	26 BDR/HAProxy server pool management
	Example

	27 tpaexec rehydrate
	Prerequisites
	Example
	Change the configuration
	Start the rehydration

	Rehydrate in phases
	Appendix
	Using awscli to change volume attributes

	28 TPA and Ansible Tower/Ansible Automation Platform
	AAP initial setup
	Add TPA Execution Environment image (admin)
	Create the EDB_SUBSCRIPTION_TOKEN credential type (admin)

	Setting up a cluster
	On the TPA workstation
	Configure
	config.yml modification

	On the AAP UI
	Project
	Inventory
	Credentials
	Template creation

	Use one project for multiple inventory
	Set Allow branch override option
	Define multiple inventories
	Define credentials per inventory

	Update TPA on AAP
	Update TPA workstation package
	Use EE image with same version tag
	Run tpaexec relink on your cluster directory
	Sync project and inventories

	Build an EE for TPA
	Prerequisites
	Environment file
	EE build command

	29 TPA, Ansible, and sudo
	Ansible sudo invocations
	Recommendations
	SSH and sudo passwords
	sudo options
	Logging
	Local privileges

	30 TPA - PuTTY Configuration guide
	Key conversion
	Configure PuTTY

	31 Troubleshooting
	Recreate python virtual environment
	Strange AWS errors regarding credentials
	Logging
	Cluster test
	TPA server test
	Including or excluding specific tasks

	32 Selective task execution
	Using task selectors
	Examples
	Supported selectors for tpaexec deploy
	Supported selectors for tpaexec test

	33 Running TPA in a Docker container
	Quickstart
	Installing Docker

	33.1 Managing clusters in a disconnected or air-gapped environment
	Preparation
	Downloading packages
	Copying packages to the target environment
	Deploying in a disconnected environment
	Updating in a disconnected environment

	33.2 Distribution support
	Debian ARM64
	Debian x86
	Ubuntu x86
	Oracle Linux x86
	RedHat x86
	RedHat ppc64le
	SLES x86
	Platform-specific considerations

	33.3 TPA capabilities and supported software
	Supported software

	33.4 Reconciling changes made outside of TPA
	Why might I need to make manual configuration changes?
	Destructive changes
	Major-version Postgres upgrades

	What can happen if changes are not reconciled?
	Non-destructive, non-blocking changes
	Destructive, non-blocking changes
	Destructive, blocking changes

	How to reconcile configuration changes
	Example: parting a PGD node
	Example: removing a PGD node completely
	Example: changing the superuser password
	Example: adding or removing an extension

	33.5 EDB Postgres Distributed configuration
	Introduction
	Installation
	Overview of cluster setup
	Instance roles
	Configuration settings
	bdr_database
	bdr_client_dsn_attributes
	bdr_node_group
	bdr_node_groups
	bdr_child_group
	bdr_commit_scopes

	Miscellaneous notes
	Hooks
	Database collations

	Older versions of PGD

	33.6 Barman
	Barman package version
	Barman configuration
	Backup scheduling
	SSH keys
	barman and barman_role Postgres users
	Shared Barman server
	Special considerations for shared Barman servers

	33.7 Configuring EFM
	EFM configuration
	efm_user_password_encryption
	efm_conf_settings
	EFM witness
	Repmgr
	Node Promotability

	33.8 Configuring haproxy
	Read-Only load-balancer
	Server options
	Example

	33.9 Configuring HARP
	Installing HARP
	Variables for HARP configuration
	Consensus layer
	etcd
	bdr

	Configuring a separate user for harp proxy
	Configuring a separate user for harp manager
	Custom SSL password command
	Configuring the harp service
	Configuring harp http(s) health probes

	33.10 Configuring Postgres Enterprise Manager (PEM)
	Supported architectures
	PEM component package versions
	PEM configuration
	Passing additional options when registering PEM agents
	Useful extensions for the nodes with pem agent
	Providing an external certificate for PEM server SSL authentication
	Shared PEM server
	Connecting to the PEM UI

	33.11 PgBouncer
	PgBouncer package version
	Configuring PgBouncer
	Databases
	Authentication
	Example

	33.12 pgd-proxy
	pgd-proxy package version
	Configuring pgd-proxy
	Configuration
	bdr_node_groups
	bdr_node_options
	pgd_proxy_options
	PGD proxy http(s) health probes

	33.13 pglogical
	pglogical package version
	pglogical configuration
	Introduction
	Publications
	Subscriptions
	Configuration changes
	Interaction with PGD
	Limitations

	33.14 repmgr
	repmgr package version
	repmgr configuration
	repmgr on PGD instances

	33.15 Configuring EDB Repos 2.0 repositories
	33.16 Configuring APT repositories
	33.17 Configuring YUM repositories
	33.18 Creating and using a local repository
	Creating a local repository with TPA
	Creating the directory structure
	Populate the repository and generate metadata

	Creating a local repository manually
	Local repo layout
	Populating the repository and generating metadata
	Debian/Ubuntu repository metadata
	RedHat/SLES repository metadata

	How TPA uses the local repository
	Copying the repository
	Repository configuration
	Package installation

	33.19 Installing from source
	Build dependencies

	33.20 Git credentials
	SSH key authentication
	HTTPS username/password authentication

	33.21 Environment
	33.22 Python environment
	Backwards compatibility

	33.23 Configuring /etc/hosts
	33.24 Filesystem configuration
	default_volumes
	Platform AWS
	Platform bare
	Platform Docker
	RAID arrays
	LUKS encryption
	Filesystem creation and mounting

	33.25 Uploading artifacts
	33.26 ssh_key_file
	33.27 Managing SSH host keys
	known_hosts

	33.28 Postgres source installation
	Git repository
	Build customisation

	Additional components
	Package installation

	33.29 Installing packages
	Optional packages
	Removing packages

	33.30 Running initdb
	Separate configuration directory

	33.31 Installing Postgres-related packages
	33.32 SSL Certificates
	PG Backup API package version

	33.33 Setting sysctl values
	33.34 Creating Postgres databases
	33.35 Creating Postgres tablespaces
	33.36 Configuring .pgpass
	33.37 The postgres Unix user
	Shell configuration
	SSH keys
	TLS certificates
	Username

	33.38 Creating Postgres users
	Password generation

	33.39 tpaexec archive-logs
	Prerequisites
	Quickstart
	Generated files

	33.40 tpaexec download-packages
	Usage
	Using the result
	Cleaning up failed downloader container

	33.41 TPA custom commands
	Quickstart
	Example

	33.42 TPA custom tests
	Quickstart
	Example
	Destructive tests

	33.43 Configuring the beacon agent
	Beacon agent package version
	Beacon agent configuration
	Installing the beacon agent
	Running the beacon agent

	33.44 Compliance
	STIG
	Option compatibility
	Settings in config.yml
	Deployment differences
	Providing client ssl certificates
	Final checks
	Exceptions

	CIS
	Settings in config.yml
	Final checks
	Exceptions

	33.45 Locale
	33.46 Patroni cluster management commands
	Patroni package version
	Patroni configuration file settings
	Patroni configuration in TPA config.yml

	Status
	Switchover

	33.47 pg_hba.conf
	33.48 pg_ident.conf
	33.49 Adding Postgres extensions
	Default Postgres extensions
	User defined extensions
	TPA recognized extensions

	33.50 postgresql.conf
	postgres_conf_settings
	shared_buffers
	effective_cache_size
	shared_preload_libraries
	Postgres log
	SSL configuration
	Making changes by hand
	Generating postgresql.conf from scratch

	33.51 tpaexec deprovision
	33.52 tpaexec info
	Usage
	Subcommands

	Example Output

	33.53 tpaexec reconfigure
	Arguments
	Changing a cluster's architecture
	Changing a cluster from PGD-Proxy to Connection Manager in PGD-Always-ON
	Changing a cluster from 2q to EDB repositories
	Output format
	Sample invocation

